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Abstract 
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1 Introduction

Testing for a unit root or the random walk hypothesis (hereafter RWH) in stock price has

been attracted substantial interest in the empirical finance literature ever since the studies

conducted by Fama and French (1988a, 1988b), Lo and MacKinlay (1988) and Poterba and

Summers (1988). This is because if there is a unit root in stock price, then this implies that

stock market returns cannot be predicted from previous prices changes. Therefore, given

only past price and return data, the current price is the best predictor of the future price,

and price change or return is expected to be zero. This is the essence of the weak-form

efficient market hypothesis (hereafter WEMH). It also implies that shocks have perma-

nent effects and volatility in stock markets will increase in the long run without bound.

However, if stock prices follow a mean reverting process, then there exists a tendency for

the price level to return to its trend path over time and investors may be able to forecast

future returns by using information on past returns.

A wealth of researches has been devoted their efforts to this issue. For example, to

name a few, McQueen (1992), Urrutia (1995), Zhu (1998), Grieb and Reyes (1999), Chaud-

huri and Wu (2003), Narayan (2005, 2006, 2008), Narayan and Smyth (2004). The findings

are mixed, if not contradictory, which means there is no corroborative conclusion vis-à-vis

the stationarity property for stock prices. Moreover, the majority applies the traditional

method in testing for the null hypothesis of a unit root of stock prices.1 Following the

works of Lo and MacKinlay (1988, 1989), many researchers attempted to use the variance

ratio test (see Chow and Denning, 1993; Richardson, 1993) for a random walk hypoth-

esis and challenged the earlier findings. For recent applications, readers are referred to

Belaire-Franch and Opong (2005a, 2005b), Hoque et al. (2007) and Kim and Shamsuddin

1It is well-known that the traditional unit root test is powerless if the true data generating process of a

series exhibits structural breaks (Perron, 1989). Therefore, a few of studies, e.g. Narayan and Smyth (2005,

2006, 2007), adopt new developed unit root test with structural breaks (Zivot and Andrew, 1992; Lumsdaine

and Papell, 1997; Lee and Strazicich, 2003) to investigate the stationary property of stock prices.
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(2008), and papers therein for details.2

The central aim of this paper is to revisit the RWH for 16 OECD stock price indices.

However, the methodology used in this paper is different from the previous studies. Pre-

vious researches, employing conventional unit root tests, provide limited information

on the degree of persistence in stock prices, as unit root tests concentrate solely on test-

ing the null hypothesis that the sum of the autoregressive (AR) coefficients is unity in

an AR representation of a series against the alternative hypothesis that the sum of the

AR coefficients is less than unity. In contrast, a confidence interval for the sum of the

AR coefficients provides us with a more informative statistical description of a variable’s

persistence, and, is helpful to testing the RWH. In this paper, we employ two recently

developed econometric procedures, due to Hansen (1999) and Romano and Wolf (2001),

in order to estimate 95% confidence intervals for the sum of the AR coefficients in AR

representations of international stock prices. To the best of our knowledge, this paper is

the first one to study the RWH of the stock prices by using the estimates of confidence

interval.

As pointed out by Rapach and Wohar (2004), unlike conventional or bootstrapped

confidence intervals, the Hansen (1999) and Romano and Wolf (2001) procedures generate

confidence intervals for nearly integrated variables with correct first-order asymptotic

coverage for the sum of the AR coefficients. Using Monte Carlo simulations, Hansen

(1999) and Romano and Wolf (2001) find that their respective procedures for constructing

asymptotically valid confidence intervals also provide good coverage in finite samples. In

addition to the sum of the AR coefficients, we measure persistence through the half-life,

or the number of years required for a shock to a variable to dissipate by one-half, as this

is a popular measure of persistence outlined in Gospodinov (2004).

2There are some studies, however, find that stock price indices could be characterized as non-linear data

generating processes. For example, Abhyankar et al. (1995, 1997), Atchison and White (1996), Kohers et

al. (1997), Schaller and van Norden (1997), Qi (1999), Kanas (2001), Sarantis (2001), Shively (2003) Narayan

(2005, 2006) and Chen (2008).
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The remainder of this paper is organized as follows. Section 2 introduces the econo-

metric methodology that we employ, and Section 3 describes the data and the empirical

test results. Section 4 presents the conclusions that we draw from this research.

2 Methodology

This section provides a brief description of the Hansen (1999) and Romano and Wolf

(2001) procedures.3 Let yt denote the logarithm of the stock price index. Consider the

following AR(p) process for the variable yt:

yt = µ + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + et (1)

for t = 1, 2, . . . , T. Andrews and Chen (1994) argue that an informative scalar measure

of persistence in the AR process is the sum of the AR coefficients, α = ∑
p
i=1 αi, as the

cumulative impulse response (CIR, the sum of the impulse response function over all

time horizons) is related to α via CIR = 1/(1 − α). Andrews and Chen (1994) view α as

more informative than the largest root of the AR model, since two AR(p) models with

identical largest roots can have very different persistence properties.

We can straightforwardly obtain a point estimate of α by rearranging equation (1) and

using OLS to estimate the familiar augmented Dickey and Fuller (1979, ADF) regression

model:

yt = µ′ + αyt−1 +
k

∑
j=1

β j∆yt−j + et (2)

where ∆yt = yt − yt−1. The construction of confidence intervals for α is problematic be-

cause the asymptotic distribution of the OLS estimator (as well as its rate of convergence)

is different in the stationary and unit-root cases.

3The expositions of this section draw heavily from Rapach and Wohar (2004), who employ the same

approach to investigate the persistence in international real interest rates for 13 industrialized countries.

Interested readers can refer to Hansen (1999) and Romano and Wolf (2001) for a full theoretical derivation.
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Hansen (1999) developed a procedure for constructing confidence intervals for α with

correct first-order asymptotic coverage.4 More specifically, consider a grid of values for

α, αi(i = 1, . . . , B), covering α̂. In order to estimate the data-generating process for each

αi, we estimate equation (2), with α restricted to αi, using restricted OLS for each αi. The

restricted OLS parameter estimates, together with resampled restricted OLS residuals, are

used to build up a large number of pseudosamples (say, 5000) for each αi. For each of the

5000 pseudo-samples for each αi, we calculate the t-statistic, t∗i = (α̂i
∗ − αi)/s(α̂i

∗), where

α̂i
∗ is the OLS estimate of α in Equation (2) for a given pseudo-sample and αi grid value.

We sort the t-statistics, giving us an empirical distribution of t-statistics for each αi from

which we can calculate the 0.025 and 0.975 quantiles of t-statistics for each αi. The upper

bound for the 95% confidence interval for α is the αi grid value such that (α̂ − αi)/s(α̂) =

t∗i,0.925. The lower bound is the αi grid value such that (α̂ − αi)/s(α̂) = t∗i,0.975.

Romano and Wolf (2001) developed a subsampling procedure for constructing confi-

dence intervals for α that also provides correct first-order asymptotic coverage.5 This ap-

proach recomputes the OLS estimator on smaller blocks, or subsamples, of the observed

series. More specifically, we begin with a block of size b and calculate the t-statistic,

τb(α̂b,t − α̂)/σ̂b,t, for each subsample of size b for t = 1, . . . , T − b + 1, where α̂b,t is the

OLS estimate of α for the tth block of size b, σ̂b,t = b1/2s(α̂b,t), and τb = b1/2. We generate

the empirical approximating distribution for the subsample t-statistics:

Lb(x) =
1

T − b + 1

T−b+1

∑
t=1

1{τb(α̂b,t − α̂)/σ̂b,t ≤ x} (3)

Let cb,0.025 and cb,0.975 be the 0.025 and 0.975 quantiles of the subsampling distribution,

4There is a well-known difficulty in constructing confidence intervals for the sum of the AR coefficients:

conventional asymptotic or bootstrapped confidence intervals are not valid for this key measure of persis-

tence when the data are generated by a nearly integrated process (Basawa et al., 1991).

5A potential advantage of the Romano and Wolf (2001) subsampling procedure is that, unlike the Hansen

(1999) grid-bootstrap procedure, it does not require the assumption that et is independently and identically

distributed (i.i.d.) in equations (1) or (2), as it is still valid for dependent error processes.
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equation (3). A 95% two-sided equal-tailed confidence interval for α is given by

[α̂ − (1/τT)s(α̂)cb,0.975, α̂ + (1/τT)s(α̂)cb,0.025] (4)

where τT = T1/2. Romano and Wolf (2001) also discuss the construction of a two-sided

symmetric subsampling interval. Instead of equation (3), we generate the empirical ap-

proximating distribution,

Lb,|·|(x) =
1

T − b + 1

T−b+1

∑
t=1

1{τb|α̂b,t − α̂|/σ̂b,t ≤ x} (5)

Let cb,|·|,0.05 be the 0.05 quantile for the empirical distribution, equation (5). A 95% two-

sided symmetric confidence interval is given by

[α̂ − (1/τT)s(α̂)cb,|·|,0.05, α̂ + (1/τT)s(α̂)cb,|·|,0.05] (6)

We follow algorithm 5.1 (minimizing confidence interval volatility) in Romano and Wolf

(2001, p. 1297) in order to select b. The algorithm proceeds as follows:

1. Compute a subsampling 95% confidence interval for α for each b in b = bsmall to

b = bbig, yielding the endpoints Ib,low and bb,up. Set bsmall = c1Tη and bbig = c2Tη

for 0 < ca < c2 and 0 < η < 1. Romano and Wolf (2001) recommend c1 ∈ [0.5, 1],

c2 ∈ [2, 3] and η = 0.5. (We set c1 = 1, c2 = 3 and η = 0.5.)

2. For each b, compute a volatility index, VIb, where the volatility index is the stan-

dard deviation of the interval endpoints in a neighbourhood of b. That is, for a

small integer k, let VIb equal the standard deviation of {Ib−k,low, . . . , Ib+k,low} plus

the standard deviation of {Ib−k,up, . . . , Ib+k,up}. Romano and Wolf recommend k = 2

or k = 3. (We set k = 2.)

Select the value for b, b∗, with the smallest volatility index and report [Ib∗,low, Ib∗,up] as the

final 95% subsampling confidence interval.
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3 Data and Results

We use the stock price indices for 16 OECD countries, i.e., Australia, Austria, Canada,

France, Germany, India, Ireland, Italy, Japan, South Korea, Netherlands, New Zealand,

Switzerland, Swiss, the UK and the USA in our empirical study. The data set is obtained

from the OECD Main Economic Indicators at http://stats.oecd.org/mei/. For all coun-

tries the data are quarterly from different starting date (see column (2) in Table 3) but

they are all ended in 2008Q1. Log transformation for stock prices are used throughout

the study.

We begin by applying various unit root tests, including of the Augmented Dickey-

Fuller (1979, hereafter ADF) test, Schmidt and Phillips (1992, hereafter SP) test, the Kwia-

towski et al. (1992, thereafter KPSS) test, the Elliott et al. (1996, hereafter DF-GLS) mod-

ified ADF test and the Ng and Perron (2001, thereafter NP) test, to ascertain the order of

integration of the variables. The key here is to account for serial correlation in conducting

the unit root test. We set the maximum lag order k = 12, which is the lagged difference,

and use the Ng and Perron (2001) modified Akaike Information Criterion (MAIC) to se-

lect the optimal lag length. In order to take into account possible shift in regime in the unit

root test, we also consider the Zivot and Andrew (1992, thereafter ZA) test that allows an

endogenous structural break. We adopt the Akaike Information Criterion (AIC) to select

the optimal lag length for the ZA.

The ADF, SP, DF-GLS, ZA and NP testing principles share the same null hypothesis

of a unit root. In contrast, the KPSS procedure tests for level (ηµ) or trend stationary (ητ)

against the alternative of a unit root. In this sense, the KPSS principles involve differ-

ent maintained hypothesis from the ADF or the DF-GLS unit root test. The NP test is a

modified version of the Phillips and Perron (1988) test which allows, first, to correct the

size distortions (as suggested by Perron and Ng, 1996), second, to improve the power (as

suggested by Elliott et al, 1996).

We summarize the various unit root test results in Table 1. Basically, we find no addi-

tional evidence against the unit root hypothesis at the 5% significance based on the ADF,
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SP, DF-GLS and NP tests in their level data but with minor exceptions. For example, the

results of the ADF ττ statistic for Canada and NP MZt statistic for Ireland, but they are

insignificant at the 1% level, indicating that the null hypothesis of a unit root cannot be

rejected. However, as Perron (1989) pointed out, in the presence of a structural break, the

power to reject a unit root diminishes if the stationary alternative is true and the struc-

tural break is ignored. To address this, we use model C of Zivot and Andrews’ (1992)

sequential trend break model to investigate the order of the empirical variables. The re-

sults from Column (9) in Table 1 generally suggest empirical variables are non-stationary

in their levels. When we apply the ADF, SP, KPSS and DF-GLS tests to the first difference

of these series (see Table 2), we must reject the null hypothesis of a unit root at the 5%

level or better. This implies that the stock prices of these 16 OECD countries have a unit

root.

As aforementioned in the introduction, conventional unit root tests alone provide lim-

ited information on the degree of persistence in stock prices, as they concentrate solely

on testing the null hypothesis that the sum of the autoregressive coefficients is unity in

an AR representation of a series against the alternative hypothesis that the sum of the

AR coefficients is less than unity. We therefore turn to apply two recently developed

econometric procedures, due to Hansen (1999) and Romano and Wolf (2001), in order to

estimate 95% confidence intervals for the sum of the AR coefficients in AR representations

of international stock prices.

Column (3) of Table 3 reports the OLS estimate of a in equation (2) for each country.

The OLS point estimates of α are greater than or equal to 0.90 for every country, with

the exception of Canada. Of course, these point estimates are biased downwards and

are of limited value. In order to provide more informative measures of persistence, we

calculate Hansen (1999) grid-bootstrap and Romano and Wolf (2001) subsampling 95%

confidence intervals for α for every country. As pointed out by Rapach and Wohar (2004),

these confidence intervals provide valid asymptotic first-order coverage and appear to

have good coverage in finite samples.
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We report the Hansen (1999) grid-bootstrap 95% confidence interval for α in column

(4) of Table 3.6 Observe that the lower bound of the grid-bootstrap confidence interval

is greater than or equal to 0.90 for every country, with the exceptions of Canada and

Ireland. For Canada and Ireland, the lower bound is still quite close to 0.90. The upper

bound of the 95% confidence interval is greater than unity for every country, so the data

are not inconsistent with a unit root in the stock price for every country. According to

the Hansen (1999) grid-bootstrap 95% confidence intervals for α, the lower bounds for

the 95% confidence intervals indicate that stock price indices display a high degree of

persistence.

Romano and Wolf (2001) equal-tailed and symmetric subsampling 95% confidence

intervals for α are found in columns (5) and (6) of Table 3. For the most part, these confi-

dence intervals are similar to the grid bootstrap confidence intervals. For the equal-tailed

intervals reported in column (5), the lower bounds are greater than 0.90, with the excep-

tion of, again, Canada and Ireland, and the lower bound is quite close to 0.9 for Canada

and Ireland. The upper bound is greater than unity for every country with the exception

of Canada (and the upper bound is still very close to unity for Canada). The symmetric

intervals, reported in column (6), are similar to the equal-tailed subsampling intervals, al-

though both the upper and lower bounds for the symmetric intervals appear to be some-

what smaller on average than those for the equal-tailed intervals. Nevertheless, with the

exception of Australia, Austria, Canada, Ireland, South Korea, Switzerland and the UK,

the lower bounds for symmetric intervals are greater than 0.90. For Austria and the UK,

the lower bound is still quite close to 0.9. The upper bound is greater than unity for every

country with the exception of Canada and Swiss, and the upper bound is still very close

to unity for the two countries. Therefore, we can conclude that most OECD stock price

indices are characterized by a random walk based on the Romano and Wolf (2001) equal-

6All computations are implemented by using the GAUSS program available from Professor David E. Ra-

pach’s homepage at http://pages.slu.edu/faculty/rapachde/Research.htm. We thank him for making

his computer code publicly available in his homepage.
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tailed and symmetric subsampling 95% confidence intervals for α, with the exception of

Canada stock price index.

Finally, we compute percentile grid-bootstrap 95% confidence intervals for the half-

life of the impulse response function using the procedure outlined in Gospodinov (2004).

The estimated results is reported in column (7) of Table 3, and the grid-bootstrap 95%

confidence interval for the half-life is reported in column (8). Note that the half-lives are

measured in years in Table 3. The confidence intervals are very wide for all of the half-

lives, and an infinite upper bound (corresponding to a nonstationary stock price) is found

for all countries. Again, the data are consistent with a high degree of persistence and in

line with the RWH.

4 Concluding Remarks

The purpose of this study is to investigate the random walk hypothesis by examining

the degree of persistence in international stock prices of 16 OECD countries based on the

recently developed Hansen (1999) grid-bootstrap and Romano and Wolf (2001) subsam-

pling procedures. These procedures generate confidence intervals for the sum of the AR

coefficients with correct first-order asymptotic coverage that also have good coverage in

finite samples. Our results indicate a high degree of persistence in quarterly stock prices.

The lower bound for the 95% confidence interval for the sum of the AR coefficients is of-

ten greater than 0.90, while the upper bound is almost always greater than unity, for the

countries we consider. Grid-bootstrap 95% confidence intervals for the half-lives have

lower bounds ranging from approximately 2 to 8 years, while the upper bound is infinite

for every country. Overall, the lower bounds for the 95% confidence intervals for the sum

of the AR coefficients and the half-lives indicate that international stock prices are highly

persistent and in line with the random walk hypothesis. In contrast to Chaudhuri and

Wu (2003) who find considerable evidence of mean reversion in emerging markets, but

consistent with Narayan and Smyth’s (2005, 2006, 2007) findings that most OECD stock
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price indices are characterized by a random walk, the only country for which one can

reject the random walk hypothesis is Canada.
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Australia 0.223 −3.076 −2.29 4.004∗∗ 0.392∗∗ 2.265 −2.255 −4.406 −9.789 −2.203

Austria −0.885 −3.109 −1.51 3.603∗∗ 0.393∗∗ 2.324 −1.386 −4.506 0.496 −2.330

Canada 0.286 −3.927∗∗ −2.82 4.188∗∗ 0.373∗∗ 2.465 −2.186 −4.869 −6.783 −1.756

France −0.483 −2.233 −1.50 4.037∗∗ 0.698∗∗ 1.954 −1.448 −3.383 −6.696 −1.822

Germany −0.140 −2.907 −1.76 3.609∗∗ 0.479∗∗ 1.045 −1.545 −3.719 −8.521 −2.040

India 1.474 −1.384 −1.18 3.960∗∗ 0.759∗∗ 3.785 −0.493 −2.909 −2.499 −0.955

Ireland −0.824 −3.204 −1.98 4.256∗∗ 0.308∗∗ 2.608 −2.093 −4.431 −17.126 −2.922∗∗

Italy −0.785 −1.880 −1.28 3.594∗∗ 0.560∗∗ 1.360 −1.268 −3.291 −7.678 −1.958

Japan −1.933 −1.277 −1.15 3.547∗∗ 0.731∗∗ 1.152 −0.436 −2.738 −3.538 −1.139

Korea −1.246 −1.908 −1.19 1.470∗∗ 0.334∗∗ 0.992 −1.263 −3.577 −6.163 −1.778

Netherlands −0.349 −2.097 −1.41 3.733∗∗ 0.672∗∗ 1.846 −1.396 −3.360 −8.924 −2.110

New Zealand −1.212 −1.885 −1.58 2.927∗∗ 0.344∗∗ 0.716 −1.477 −4.668 −12.804 −2.489

Switzerland −0.229 −1.829 −1.54 4.605∗∗ 0.746∗∗ 3.022 −1.490 −4.033 −5.274 −1.619

Swiss −0.703 −2.253 −1.70 3.910∗∗ 0.498∗∗ 2.169 −1.709 −4.174 −10.269 −2.262

UK −0.953 −2.926 −1.91 4.060∗∗ 0.368∗∗ 2.135 −1.785 −3.835 −12.006 −2.384

USA 0.727 −2.109 −1.48 4.008∗∗ 0.811∗∗ 3.302 −1.330 −3.872 −6.997 −1.840

(1) The critical values for the ADF τµ and ττ statistics at the 10%, 5%, 1% significance levels are −2.57, −2.88, −3.46 and −3.13, −3.43, −3.99, respectively.
(2) The critical value for the SP τ statistic at the 5% significance level is −3.04.
(3) The critical values for the KPSS ηµ and ητ statistics at the 10%, 5%, 1% significance levels are 0.347, 0.463, 0.739 and 0.119, 0.146, 0.216, respectively.
(4) The critical values for the DF-GLS Z(t)=(1) and Z(t)=(1, t) statistics at the 10%, 5%, 1% significance levels are −1.62, −1.95, −2.58 and −2.57, −2.89, −3.48, respectively.
(5) The critical values for the ZA test for model C at the 5% and 1% significance levels are −5.08 and −5.57, respectively.
(6) The critical values for the NP MZα and MZt statistics at the 5% significance levels are −17.3 and −2.91, respectively.
(7) ∗, ∗∗ and ∗ ∗ ∗ denote significant at the 10%, 5% and 1% level, respectively.
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Table 2: Results of the Unit Root Test for Differenced Data

(1) (2) (3) (4) (5)
Differenced data ADF SP KPSS DF-GLS

Country τµ τ ηµ Z(t) = (1)

Australia −4.869∗∗ −9.39∗∗ 0.043 −11.535∗∗

Austria −5.737∗∗ −9.21∗∗ 0.086 −5.690∗∗

Canada −7.456∗∗ −10.15∗∗ 0.075 −11.463∗∗

France −10.460∗∗ −8.66∗∗ 0.086 −10.165∗∗

Germany −3.582∗∗ −6.26∗∗ 0.094 −6.965∗∗

India −7.271∗∗ −10.83∗∗ 0.432 −7.460∗∗

Ireland −6.673∗∗ −9.26∗∗ 0.040 −9.992∗∗

Italy −5.847∗∗ −7.87∗∗ 0.082 −9.500∗∗

Japan −9.259∗∗ −6.88∗∗ 0.348 −7.490∗∗

Korea −7.288∗∗ −5.56∗∗ 0.115 −5.338∗∗

Netherlands −4.582∗∗ −6.59∗∗ 0.083 −6.683∗∗

New Zealand −3.993∗∗ −8.38∗∗ 0.087 −9.044∗∗

Switzerland −5.385∗∗ −9.64∗∗ 0.086 −11.137∗∗

Swiss −10.948∗∗ −8.95∗∗ 0.052 −10.563∗∗

UK −11.088∗∗ −8.09∗∗ 0.083 −6.921∗∗

USA −10.523∗∗ −7.55∗∗ 0.125 −9.391∗∗

(1) The critical values for the ADF τµ and ττ statistics at the 10%, 5%, 1% significance levels are −2.57, −2.88, −3.46 and −3.13, −3.43, −3.99, respectively.
(2) The critical value for the SP τ statistic at the 5% significance level is −3.04.
(3) The critical values for the KPSS ηµ and ητ statistics at the 10%, 5%, 1% significance levels are 0.347, 0.463, 0.739 and 0.119, 0.146, 0.216, respectively.
(4) The critical values for the DF-GLS Z(t)=(1) and Z(t)=(1, t) statistics at the 10%, 5%, 1% significance levels are −1.62, −1.95, −2.58 and −2.57, −2.89, −3.48, respectively.
(5) ∗, ∗∗ and ∗ ∗ ∗ denote significant at the 10%, 5% and 1% level, respectively.
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Table 3: Point estimates and 95% confidence intervals for measures of stock price persistence

(1) (2) (3) (4) (5) (6) (7) (8)
Grid-bootstrap Subsampling Subsampling Grid-bootstrap

Country Sample period α̂OLS 95% CI equal-tailed symmetric HLIRF 95% CI
95% CI 95% CI

Australia 1958 Q 1–2008 Q 1 0.927 [0.910, 1.017] [0.924, 1.028] [0.851, 1.023] 2.889 [2.027, ∞]

Austria 1957 Q 1–2008 Q 1 0.950 [0.945, 1.013] [0.939, 1.015] [0.890, 1.007] 4.699 [3.299, ∞]

Canada 1956 Q 1–2008 Q 1 0.895 [0.885, 1.015] [0.895, 0.979] [0.857, 0.979] 2.018 [1.426, ∞]

France 1955 Q 1–2008 Q 1 0.969 [0.960, 1.017] [0.969, 1.016] [0.929, 1.015] 6.463 [4.296, ∞]

Germany 1960 Q 1–2008 Q 1 0.945 [0.939, 1.022] [0.931, 1.008] [0.918, 1.003] 3.968 [2.739, ∞]

India 1957 Q 1–2008 Q 1 0.980 [0.974, 1.019] [0.983, 1.033] [0.933, 1.025] 9.755 [7.294, ∞]

Ireland 1955 Q 1–2008 Q 1 0.916 [0.896, 1.017] [0.898, 1.022] [0.851, 1.005] 2.167 [1.670, ∞]

Italy 1957 Q 1–2008 Q 1 0.976 [0.960, 1.013] [0.980, 1.017] [0.929, 1.016] 6.330 [4.272, ∞]

Japan 1959 Q 1–2008 Q 1 0.986 [0.981, 1.017] [0.987, 1.032] [0.948, 1.024] 12.439 [7.996, ∞]

South Korea 1981 Q 1–2008 Q 1 0.939 [0.912, 1.028] [0.954, 1.041] [0.863, 1.014] 3.594 [2.514, ∞]

Netherlands 1957 Q 1–2008 Q 1 0.969 [0.968, 1.019] [0.962, 1.013] [0.941, 1.013] 7.876 [5.064, ∞]

New Zealand 1967 Q 1–2008 Q 1 0.963 [0.945.1.023] [0.953, 1.021] [0.911, 1.014] 5.100 [3.461, ∞]

Switzerland 1950 Q 1–2008 Q 1 0.967 [0.952, 1.015] [0.940, 1.070] [0.826, 1.043] 5.956 [3.899, ∞]

Swiss 1955 Q 1–2008 Q 1 0.956 [0.937, 1.011] [0.947, 1.000] [0.915, 0.997] 4.250 [3.058, ∞]

UK 1958 Q 1–2008 Q 1 0.952 [0.939, 1.020] [0.944, 1.043] [0.890, 1.027] 4.324 [2.897, ∞]

USA 1957 Q 1–2008 Q 1 0.970 [0.957, 1.016] [0.967, 1.027] [0.919, 1.022] 6.151 [4.111, ∞]

(1) Lag length k in equation (2) selected using the Ng and Perron (2001) modified AIC.
(2) OLS estimate for the sum of the AR coefficients in equation (2).
(3) Estimate of the half-life (measured in years) based on the impulse response function.
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