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1. Introduction

The majority of results established by the literature on auctions with
multi-unit bidder demands have been limited due to an absence of ana-
lytic solutions (see Ausubel and Cramton 2002, Black and DeMeza 1992,
Engelbrecht-Wiggans and Kahn 1998a, 1998b, Katzman 1995, 1999, and
Noussair 1995). The inherent problem in examining auctions with multi-
unit demands stems from the complexity of the first order conditions in the
bidder’s problem. This complexity results from the fact that bidders sub-
mit multiple bids, each potentially formulated using a different bid function.
That is, the amount that a bidder’s kth bid is shaded below its corresponding
valuation may differ from the amount that his k + 1st bid would be shaded
below the same valuation, a strategy that we refer to as differential shading.
Engelbrecht-Wiggans (1999), Swinkels (1999, 2001), Jackson and Kre-

mer (2002), and Chakraborty and Engelbrecht-Wiggans (2005) have avoided
tractability problems by examining efficiency and prices asymptotically. For
instance, Swinkels (1999, 2001) shows that both the discriminatory and uni-
form price auctions generate ex ante efficiency when there are a large number
of bidders. His work is appealing in that no assumptions regarding symme-
try of bidders, nor equilibrium are necessary to generate his results. How-
ever, while he offers valuable insight into equilibrium behavior in the limit,
this approach admittedly is not “able to draw the connection between limit
equilibria and the standard equilibrium of simple auctions.” Our paper char-
acterizes just that link by deriving the asymptotic properties of equilibrium
directly from an individual bidder’s maximization problem.
Our paper is less concerned with the asymptotic efficiency of auctions

than with whether models of those auctions generate price taking behavior
as the number of bidders grows large. That is, we ask if the limiting case of
these auctions is in line with the neoclassical assumptions of price taking. We
find that price taking does result in the discriminatory auction and uniform
auction where the price paid equals the lowest winning bid. However, when-
ever the price paid in a uniform price auction is tied to the highest losing
bid,1 differential shading persists and price taking does not emerge.
Finally, an issue related to bid shading in uniform price auctions is bid/offer

misrepresentation in the k-double auction studied by Rustichini et al. (1994)

1This uniform price auction has been examined quite often given its similarity to a
second price single object auction where the highest losing bid determines the price paid.
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where buyers (sellers) demand (supply) a single unit. They show that price
taking emerges as the number of bidders grows. We develop a k-uniform price
auction similar to their k-double auction and our results indicate that bid
misrepresentation will not disappear in k-double auctions if multiple units are
demanded by individual bidders and that the neoclassical model of markets
is not the limiting case of the k-double auction.

2. The Environment

Discriminatory and uniform price auctions are used to sell m homoge-
neous objects to N + 1 risk neutral bidders. Each bidder (n = 1, . . . , N + 1)
has a positive valuation for d ≤ m objects. The marginal valuations of bidder
n are denoted vn(h), h = 1, . . . , d. A downward sloping demand property is
imposed on each bidder’s valuations in that, vn(1) ≥ vn(2) ≥ · · · ≥ vn(d).
Bidder’s valuation vectors, v, are drawn independently from a joint distrib-
ution function F (v) that is continuously differentiable in all of its arguments
with an atomless corresponding distribution function, the zero vector as a
lower bound, and a finite symmetric vector as an upper bound.
In order to formulate a bidder’s maximization problem in each auction,

that bidder’s probabilistic beliefs about his opponents’ bids must be specified.
This section specifies the distributions of these bids in general terms. In each
auction, individual bidders submit d bids. In a given auction, an individual
bidder competes against the highest m of the dN bids placed by his oppo-
nents. Let ∆k(b) denote the cumulative distribution of the kth highest of
these bids. Clearly, these distributions depend on the strategies employed by
the bidder’s opponents, which themselves will depend on the auction format.
The ex ante symmetry of bidders leads to focus on symmetric equilibria.

Assume that in auction form a (= discriminatory, uniform) each bidder be-
lieves that his opponents are using the bid function, Ba(v) : R

d → Rd, that is
continuously differentiable and monotonic increasing in all of its arguments.
The fact that opponents’ bid strategies and valuation distributions are iden-
tical dictates that the probability measure over any one opponent’s bids is
identical to that over any other opponent’s bids. Let αj(b), j = 0, . . . , d,
represent the probability that a bid b, is less than exactly j of another bid-
der’s bids and higher than the other d − j of that other bidder’s bids. By
the above assumptions α

0
j(b) may be positive or negative with the exception
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that α
0
0(b) > 0 ∀b. Letting i denote the number of bids another player has

above a bid (b), λi indicates the number of individual bidders for which this
is true. Using this formulation, ∆k(b) is defined by the following recurrence
relation, with ∆0(b) = 0,

∆k(b) = ∆k−1(b) +
XP
iλi=k−1

(Ã
N

λ1, ..., λd

!
dY

w=0

αw(b)
λw

)
, k = 1, . . . , dN (1)

where λ0 = N−Pd
j=1 λj,

³
N

λ1,...,λd

´
=
³
N
λ1

´³
N−λ1
λ2

´
· · ·

³
N−η
λd

´
, and η =

Pd−1
i=1 λi.

2

It follows that the density of the kth highest bid is defined by the following
recurrence relation, with δ0(b) = 0,

δk(b) = δk−1(b)+
dX
l=0

XP
iλi=k−1

(Ã
N

λ1, ..., λd

!
α0l(b)λl
αl(b)

dY
w=0

αw(b)
λw

)
, k = 1, . . . , dN.

(2)
Before continuing, an example of how λ works will ease the burden on

the reader. ∆3(b)−∆2(b) is the probability that b is less than exactly three
opponents’ bids and greater than the remaining dN−3 bids. The three ways
that this can happen are (1) b is less than a single bid from three different
opponents in which case λ0 = N − 3, λ1 = 3, and λ2 = λ3 = · · · = λd = 0.
(2) b is less than one of a single opponent’s bids, less than two of another
opponent’s bids, and greater than all other opponents’ bids in which case
λ0 = N − 2, λ1 = 1, λ2 = 1, and λ3 = λ4 = · · · = λd = 0. (3) b is less than
three of a single opponent’s bids and greater than all other bids in which
case λ0 = N − 1, λ1 = 0, λ2 = 0, λ3 = 1, and λ4 = λ5 = · · · = λd = 0. Notice
that in each case

Pd
i=1 iλi = 3 and that

Pd
j=0 λj = N as is required.

3. The Discriminatory Auction

A bidder that wins t ≤ d objects pays
Pt

i=1 bi. The bidder’s problem is

max
b1,...,bd

dX
j=1

(v(j)− bj)∆m+1−j(bj) (3)

s.t. bn ≥ bl, 1 ≤ n < l ≤ d.

2The cobinatorial term in Eq. (1) is similar to the combinatorial expression of the
multinomial expansion, (a+ b)k−1. The primary difference is that the multinomial expan-

sion is summed over the values of λ such that
Pk−1

i=1 λi = k− 1, whereas our sum is taken

over values of λ for which
Pk−1

i=1 iλi = k − 1.
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If the constraints do not bind, the relevant first order conditions are

(v(j)− bj)δm+1−j(bj)−∆m+1−j(bj) = 0, j = 1, . . . , d. (4)

However, the constraints will bind in this case for certain realizations of
valuations. Engelbrecht-Wiggans and Kahn (1998b) and Katzman (1995)
first showed the intuition behind the binding constraints using the case where
two units are sold. In that case, the system of Eqs. (4) reduces to

(v(1)− b1)δ2(b1)−∆2(b1) = 0

(v(2)− b2)δ1(b2)−∆1(b2) = 0,

the solution of which is not analytically tractable and can only be obtained
using numerical techniques. The lack of analytic tractability in a system of
equations of this type is not new to auction theory. Maskin and Riley (2000)
have encountered a similar system of equations when analyzing single object
auctions in the presence of ex ante bidder asymmetry. Perhaps surprisingly,
the intuition provided by Maskin and Riley (2000) applies here as well, de-
spite the fact that bidders are ex ante symmetric. This is most easily seen
in the case of two objects being auctioned. In such a situation, a bidder’s
high bid must only be greater than the second highest of his opponents’ bids
while his low bid must exceed all of his opponents’ bids. The result is that
the bidder formulates his low bid using a more aggressive function than that
used to formulate his high bid. This difference in aggressiveness creates a
tendency for low bids to be above high bids when the two valuations are too
“close” together. When this occurs, the constraint is violated and Kuhn-
Tucker optimization is needed. This creates an additional equation that can
be used to eliminate the Lagrangian multiplier. The result is a third equation
in the system,

(L− b∗)δ2(b
∗)−∆2(b

∗) + (L− b∗)δ1(b
∗)−∆1(b

∗) = 0 (5)

where L is defined as the highest low valuation that can lead to identical bids
of b∗. Figure 1 shows the equilibrium level curves. There are two regions; one
where different bids, b1 and b2, are submitted (when valuations are far enough
apart), the other where identical bids, b∗, are submitted (when valuations are
close enough together). Differential shading is seen by the fact that the level
curves for the high and low bids do not meet at the 45o line.
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Figure 1: Discriminatory Auction Level Curves

4. The Uniform Price Auction

This section formulates a bidder’s problem for a k-uniform price auction
where the price paid by winning bidders is k times the highest losing bid plus
(1 − k) times the lowest winning bid. A bidder that wins t ≤ d objects in
this auction pays t times the market clearing price. The bidder’s problem is

max
b1,...,bd

dX
j=1

v(j)∆(m+1−j)(bj)

−k
⎡⎣ dX
j=1

(
j
Z bj

bj+1
xδ(m+1−j)(x)dx

)
+

dX
j=1

(j − 1)bj[∆m+2−j(bj)−∆m+1−j(bj)]

⎤⎦
−(1− k)

⎡⎣ dX
j=1

(
j
Z bj

bj+1
xδ(m−j)(x)dx

)
+

dX
j=1

jbj[∆m+1−j(bj)−∆m−j(bj)]

⎤⎦
s.t. bn ≥ bl ∀ 1 ≤ n < l ≤ d, bd+1 = 0.
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The resulting first order conditions are

[v(j)− bj]δm+1−j(bj)− k(j − 1)[∆m+2−j(bj)−∆m+1−j(bj)]

− (1− k)j[∆m+1−j(bj)−∆m−j(bj)] = 0, j = 1, ..., d. (6)

As in the discriminatory auction example, an analytic solution to this system
is unattainable. In order to understand differential shading in this environ-
ment, let us return to the example of the last section, examined now in terms
of the special case of k = 1 where the first order conditions are

[v(j)−bj]δm+1−j(bj)−(j−1)[∆m+2−j(bj)−∆m+1−j(bj)] = 0, j = 1, ..., d. (7)

When bidders only demand one unit each (j = 1), Eq. (7) gives the dominant
strategy of placing a high bid equal to ones high valuation. However, Eq.
(7) also shows that for j > 1, bids should be shaded below valuations. As
opposed to bids in the discriminatory auction, differential shading in this case
consists of low bids that are shaded more than high bids: a result deemed
demand reduction by Ausubel and Cramton (2002).

Figure 2: Uniform Price Auction Level Curves
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Differential shading can be seen in Figure 2 as the high and low bid level
curves do not meet at the 45o line.

5. Asymptotic Results

The methodology used in this section is quite simple. Using the first order
conditions derived in Sections 3 and 4, the level of bid shading is isolated
and examined as N →∞. Price taking will emerge if all bids approach their
corresponding valuations. Before proceeding we note that while the model
was set up for any increasing bid functions used by a bidder’s opponents, in
this section we simply assume that opponents are bidding their valuations
(which is a strictly increasing function itself) and ask if, in the limit, it is
optimal for the optimizer to do so as well.

Lemma 1 Given the assumptions on F (v) and opponent bid functions, the

expression ∆m+1−j(bj)
δm+1−j(bj)

approaches zero as N →∞.

Proof. Eq. (1) gives

∆m+1−j(bj)−∆m−j(bj) =
XP
iλi=m−j

(Ã
N

λ1, ..., λd

!
dY

w=0

αw(b)
λw

)
(8)

and Eq. (2) gives

δm+1−j(bj) = δm−j(bj) +
dX
l=0

XP
iλi=m−j

(Ã
N

λ1, ..., λd

!
α0l(bj)λl
αl(bj)

dY
w=0

αw(b)
λw

)
,

(9)
where λ0 = N −Pd

j=1 λj.
The laws of limits allow us to make a number of simplifications by making

a few useful observations. (1) any summation using the combinatorial term³
N

λ1,...,λm−j

´
, the term with the coefficient

³
N

m−j,0,...,0

´
=
³

N
m−j

´
will contain

Nm−j/(m − j)!, the highest order term in N possible. (2) α0(b) is the only
α term raised to a power dependent on N . (3) dividing the numerator and

denominator of ∆m+1−j(bj)
δm+1−j(bj)

by Nm−jα0(b)
N−m+j has two affects when taking

the limit as N →∞. First, dividing by α0(b)N−m+j removes all dependence
on N from the α probabilities and therefore only the combinatorial terms
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will be affected as N → ∞. Second, because every N in the combinatorial
terms is raised to a power less than or equal to m− j, dividing by Nm−j and
taking the limit as N →∞ will cause all terms of order lower than m− j to
vanish. Dividing the numerator and denominator by Nm−jα0(b)

N−m+j and
taking the limit as N →∞, the numerator becomes α1(b)m−j, a finite value.
Likewise, the denominator becomes

lim
N→∞

(
(N −m+ j)

α1(b)
m−j

α0(b)
α00(b) + (m− j)α1(b)

m−j−1α01(b)

)
,

the limit of which clearly goes to infinity since α0(b) 6= 0.

Theorem 2 Differential shading vanishes in the discriminatory auction as
N →∞ and price taking results.

Proof. Rearranging Eq. (4) gives

(v(j)− bj) =
∆m+1−j(bj)

δm+1−j(bj)
, j = 1, . . . , d. (10)

The LHS of Eq. (10) can be seen as the amount that bid j is shaded below
valuation v(j). Lemma 1 shows that the RHS of Eq. (10) approaches zero
as N → ∞ and therefore, all bids approach their corresponding valuations.
Since all bids eventually equal valuations, differential shading vanishes and
the constraints do not bind in the limit.

Remark 1. The convergence of bids to valuations in the discriminatory
auction is easily seen in Figure 1. As the number of bidders increases, the
shaded region shrinks until the point at which the high and low bid level
curves meet approaches the 45o line.

Lemma 3 Given the assumptions on F (v) and opponent bid functions, the

expression j [∆m+1−j(bj)−∆m−j(bj)]
δm+1−j(bj)

approaches zero as N →∞.

Proof. A few useful observations are in order. (1) the term [∆m+1−j(bj)−
∆m−j(bj)] reduces to:

XP
iλi=m−j

Ã
N

λ1, ..., λd

!
dY

w=0

αw(b)
λw . (11)
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(2) the term with the coefficient
³

N
m−j

´
will be of the highest order in N .

(3) Dividing the numerator and denominator of [∆m+2−j(bj)−∆m+1−j(bj)]
δm+1−j(bj)

by

Nm−jα0(b)
N−m+j has two effects. First, since all α0(b) terms are raised to a

power dependent on N , dividing by α0(b)
N−m+j will remove all dependence

on N from the α probabilities and the taking the limit will only affect the
combinatorial terms. Second, dividing by Nm−j will cause all terms in which
N is raised to a power less than m − j to vanish in the limit. Dividing
the numerator and denominator by Nm−jα0(b)

N−m+j and taking the limit
as N → ∞, the numerator becomes α1(b)m−j, a finite value. Likewise, the
denominator becomes

lim
N→∞

(
(N −m+ j)

α1(b)
m−j

α0(b)
α00(b) + (m− j)α1(b)

m−j−1α01(b)

)
,

the limit of which clearly goes to infinity since α0(b) 6= 0.

Lemma 4 Given the assumptions on F (v) and opponent bid functions, the

expression (j − 1) [∆m+2−j(bj)−∆m+1−j(bj)]
δm+1−j(bj)

approaches (j−1)α1(b)
(m+1−j)α00(b)

as N →∞.

Proof. A few useful observations are in order. (1) the term [∆m+2−j(bj)−
∆m+1−j(bj)] reduces to:

XP
iλi=m+1−j

Ã
N

λ1, ..., λd

!
dY

w=0

αw(b)
λw . (12)

(2) the term with the coefficient
³

N
m+1−j

´
will be of the highest order in

N . (3) Dividing the numerator and denominator of [∆m+1−j(bj)−∆m−j(bj)]
δm+1−j(bj)

by

Nm+1−jα0(b)
N−m−1+j has two effects. First, since all α0(b) terms are raised

to a power dependent on N , dividing by α0(b)
N−m−1+j removes all depen-

dence on N from the α probabilities and taking the limit will only affect
the combinatorial terms. Second, dividing by Nm+1−j will cause all terms in
which N is raised to a power less than m+ 1− j to vanish in the limit. Di-
viding the numerator and denominator by Nm+1−jα0(b)

N−m−1+j and taking
the limit as N → ∞, reduces the numerator to (j − 1)α1(b)m+1−j, a finite
number. Likewise, the denominator becomes α1(b)

m−jα00(b), a finite number
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since α00(b) > 0. The only way for differential shading to vanish in this case
is for α0(b) to approach infinity. However, it cannot given the assumptions
that opponents are bidding their valuations.

Theorem 5 As N →∞, differential shading persists in the k-uniform price
auction when k ∈ (0, 1], but price taking emerges when k = 0.

Proof. Rearranging Eq. (6) gives

(v(j)− bj) = (1− k)j
[∆m+2−j(bj)−∆m+1−j(bj)]

δm+1−j(bj)

+k(j − 1)[∆m+1−j(bj)−∆m−j(bj)]

δm+1−j(bj)
. (13)

The LHS of Eq. (13) is the amount that bid j is shaded below valuation
v(j). Lemmas 3 and 4 show that only the first term on the RHS of Eq. (13)
vanishes as N → ∞ ∀j. Hence, as N → ∞, the RHS will not vanish and
bids will not equal values if k ∈ (0, 1].

Remark 2. Not only does price taking fail to emerge, but since the non-zero
convergent term is multiplied by a factor of (j − 1), bids are differentially
shaded in the limit, indicating the possibility of ex post inefficiency. Swinkels
(2001) has shown that the uniform price auction achieves an ex ante expec-
tation of efficiency in the limit, leading to a seeming contradiction with our
result. However, Swinkels’ result allows for differential shading over certain
regions of valuations, but hinges on the fact that it disappears over the “rel-
evant” range of demand. The idea is that the probability that an inefficient
bid wins approaches zero in the limit. We have shown that this ex ante
expectation of an efficient allocation is not driven by price taking behavior.

6. Conclusions

The literature on single object auctions has provided a variety of results
concerning revenue generation, allocative efficiency, and price formulation.
The slow development of a cohesive theory of multi-unit auctions led econo-
mists to use these results to predict outcomes of their multi-unit counterparts
(see Chari and Weber 1992). Unfortunately, recent theoretical advances have
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shown that the added complexities of a multi-unit environment lead to starkly
different conclusions than those suggested by single object models. Despite
these recent breakthroughs, the understanding of multi-unit auctions is far
from complete. This paper enhances the understanding of multi-unit auc-
tions by isolating the asymptotic properties of equilibria in IPV discrimi-
natory and uniform price auctions. Our primary findings are that as the
number of bidders grows large: (1) price taking behavior emerges in discrim-
inatory auctions and uniform price auctions where the price paid equals the
lowest winning bid and (2) price taking does not occur in any uniform price
auction where the price is tied to the highest losing bid.
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