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Abstract 
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1 Introduction

Public-private partnerships are contractual forms between public procurements and full pri-

vatization. Public authorities involve private �rms in public projects because they need

private funds for large investments in infrastructure. At the same time, full privatization

is not desirable because the public authorities need to keep the control of the activities of

public service provision, for which market competition does not exist. Under a public-private

partnership, the project is private only during the period of the contract. At the end of the

contract the ownership of the infrastructure reverts to the public authority. Ceteris paribus,

the shorter the contract duration the higher the public bene�t of the project.

Engel et al. (1997; 2001; 2007) argue that a public-private partnership for building

and operating highways must, at optimum, take the form of �exible-term contracts. The

contract stipulates the return that the �rm has to obtain from the project and lasts until

the cumulated cash �ow hits this return.

The reason why �exible-term contracts were proposed is that they have some advantages

over �xed-term contracts, whenever uncertainty exists. In transportation infrastructure in-

vestments, uncertainty has led to frequent renegotiations in bad states of the world, when

cash �ows were low and so did not allow for cost recovery (Guash, 2004). Under a �exible-

term contract the return of the �rm is certain (or less risky) and thus renegotiation is avoided,

or, at least less likely. Indeed, the �rm is allowed to operate over a longer period whenever

the cash �ow is low, until the cumulated cash �ow hits the contracted return. In turn, the

duration of the contract is shortened in a good state of the world, in which the contracted

return is obtained rapidly by the �rm.

Engel et al. (1997; 2001; 2007) show the advantage of �exible-term contracts in the

context of two-period uncertainty and a risk averse private �rm. In this study we show

that when the uncertainty lasts over multiple periods, the expected contract duration can be

suboptimally high. The scope of this study is to signal that �exible-term contracts have a

drawback that should be accounted for in the analysis of the optimal contractual regime. For

simplicity of the exposition, we assume that the private partner is risk neutral but further

extensions can be made to assume that the �rm is risk averse.

The fact that the returns of infrastructure projects are uncertain is obvious. For instance,

tra¢ c prevision is subject to signi�cant errors, as many empirical studies have shown1.

1One example is the study of Quinet (2000), who distinguishes three sources of inaccuracy: the model
structure, current data and future value of exogenous variables. Small and Winston (1998) argue that un-
certainty about future tra¢ c comes on the one side from economic conditions, technology etc (i.e. exogenous
factors), which are di¢ cult to forecast accurately and on the other side from the fact that the information
is not transferable across time and space. Skamris and Flybjerg (1997) do an empirical comparison between
roads and railroads and show that forecast of railroads seem to be technically more problematic than that
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Moreover, to see why uncertainty lasts over multiple periods, one could think about the

in�uence of GDP on the demand for transportation. GDP is exogenous to the transportation

sector and its dynamics determine permanent and uncertain shocks on the demand2. Because

GDP is dynamic, the uncertainty about the demand lasts all over the future.

We explain brie�y the result. Let us denote E (T ) the expectation of the �exible period

T , which is the necessary time that allows the �rm to cumulate a certain reservation utility

u. We show that E (T ) is weakly higher than T 0, the duration of the �xed-term contract,

which is necessary for the �rm to obtain u in expectation, i.e. to satisfy its participation in

the project. E (T ) = T 0 only in the speci�c case in which the uncertainty does not exist, i.e.

in the situation in which �exible-term contracts become unnecessary.

Formally, this di¤erence can be explained as follows. Under �exible-term contracts the

cash �ow of the �rm is upper bounded by some level at which the cumulated cash �ow reaches

the value u. Indeed, the contract ends when u is obtained. However, in bad states of the

world, the cash �ow of the �rm is not bounded from below. It can go as low as possible while

the contract lasts until the cash �ow moves up to the upper bound at which u is obtained.

Hence an asymmetry between up and down shifts of the cash �ow of the �rm exists. When

the contract has a �xed-term, such asymmetry does not exist. The �rm takes the risk of

down shifts of the cash �ow, but it also takes the advantage of any upstream evolution of the

cash �ow. In expectation, the cumulated market bene�t of the �rm in an uncertain market

is expected to be higher when upstream revenues are not limited. Consequently, this upper

boundary leads to the inequality E (T ) � T 0.
The remainder is organized as follows. Section 2 presents a discrete time example of the

issue with three and four-period uncertainty. Section 3 describes the general model. Section

4 concludes.

2 Discrete time example

We take �rst an example with three-period uncertainty and no discount factor. The cash

�ow yt of the �rm is distributed according to a simple random walk. Figure 1 shows the

possible states of yt. The initial state is y0 = 1. yt shifts up or down with 1 unity and equal

probabilities between any two periods from t = 0 to t = 3.

of roads.
2A particular trend of the literature is to investigate the time lag over which demand responds to changes

in its determinants, in particular in GDP (see for instance, Goodwin, 1976 and Oxera, 2005).
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Figure 1: States of yt under three-period uncertainty

Assume that the �rm is risk neutral and has zero reservation utility. The �rm makes an

investment I = 2, so that it participates if it obtains a cumulated cash �ow of u = 2. The

utility u can be o¤ered to the �rm in expectation, through a �xed-term contract T 0, such

that E (eu) = u. Alternatively, u is o¤ered with certainty, through a �exible-term contract

T .

If the �xed-term contract is o¤ered to the �rm, then the participation of the �rm is

ensured if T 0 = 2. In this way the �rm obtains an expected return

u = E (eu) = E (y1) + E (y2) = 1 + 1 = 2
Note that the value of y0 is relevant only for the forecast of future states; the �rm starts

producing at date 0 and obtains a pro�t only from period 1. Also, because the �rm is risk

neutral, the uncertainty about yt is irrelevant for its reservation utility. The �rm obtains

in expectation E (eu) = u while the real utility eu can be either 5, 2 or �1. So the �rm can

obtain a high pro�t 5� 2 = 3 but it can also face losses of �3.
Under a �exible-term contract the contract duration T 0 is determined as the �rst passage

time at which the cumulated pro�t of the �rm is at least u = 2. In our example, T = 1

whenever y1 = 2, which occurs with probability 1=2. With the same probability, y1 = 0, in

which case T � 3. The inequality is strict if y1 = 0 is followed by y3 = 0 or �2. Overall,
T = 1 with probability 1=2, T = 3 with probability 1=8 and T > 3 with probability 3=8.

Evidently, E (T ) > T 0.

Suppose now that uncertainty lasts between t = 0 and t = 4, as in the Figure 2 below.
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Figure 2: States of yt under four-period uncertainty

As previously, if y1 = 2 then T = 1. If y1 = 0, y2 = 1 and y3 = 2 then T = 3. Otherwise,

T > 3. The novelty with respect to the previous example is that whenever yi < 2, for

i 2 f1; 2; 3g, the contract duration T is such that T > 4. Evidently, E (T ) > T 0 as before,
but at the same time E (T ) is higher under four-period uncertainty than under three-period

uncertainty. The same reasoning applies when any new period of uncertainty is added to

the problem. In the realistic case in which uncertainty lasts in�nitely, there is some positive

probability that T lasts in�nitely.

3 Continuous time model

Assume now that yt follows a geometric Brownian motion with drift � > 0 and volatility

� � 0, such that
dyt = �ytdt+ �ytdzt; (1)

with zt a simple Brownian motion.

3.1 Fixed-term contract

We assume for simplicity that the life time of the project is the in�nity. The term T 0 of

the contract is chosen in a way that the �rm obtains in expectation its reservation utility:

E (eu) = u. The payo¤ of the �rm is

Vfi (y0) = Ey0

�Z 1

0

yte
�rtdt�

Z 1

T 0
yte

�rtdt

�
; (2)

with Ey0 the expectation operator, given the current state y0.

The �rst term of Vfi (y0) is the expected discounted cash �ow of the project. Because the

contract ends at time T 0, the discounted cash �ow of all periods t > T 0 is substrated from

V (y0). The contracting term T 0 is �xed, while the exact value yfi at which the contract ends
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is unknown. To �nd its expected value, we can write from (1) the expression

Ey0 (yt) = y0e
�t; 8 t � 0; (3)

so that for t = T 0, Ey0 (yfi) = y0e
�T 0. From (2) and (3) we can write

Vfi (y0) =
y0
r � � � e

�(r��)T 0 y0
r � �

The contract duration T 0 must solve the equality V (y0) = u, which is equivalent to

T 0 = ln

 
1� u

�
y0
r � �

��1!� 1
r��

(4)

(4) shows that T 0 is independent of the volatility parameter �. The �rm is given u in

expectation while the risk of the project is borne by the �rm.

3.2 Flexible-term contract

We de�ne � = inf ft � 0 s:t: yt = yflg the termination period of the �exible-term contract

(previously T ). � is the �rst time at which the hitting value yfl is reached, i.e. the time

at which the market pro�t yfl is such that the �rm obtains its reservation utility u. The

Appendix shows the standard calculation for the derivation of the payo¤ of the �rm. For

any y < yfl, the value of the project is

Vfl (y) = Ey

�Z 1

0

yte
�rtdt

�
�
�
y

yfl

��
Eyfl

Z 1

0

yte
�rtdt (5)

=
y

r � � �
�
y

yfl

��
yfl
r � �;

with � is the positive root of the quadratic

Q (x) = � (� � 1) �
2

2
+ �� � r (6)

The �rst term in the expression of V (y) is the expected discounted cash �ow that the �rm

would obtain if the contract lasted in�nitely. The second term substrates from this value

the discounted cash �ow that corresponds to the periods beyond the contract. The contract

ends when some value yfl is hited by the stochastic variable for the �rst time. The expression�
y
yfl

��
is the discounting operator in the space of realizations of the stochastic variable, so
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that �
y

yfl

��
= E

�
e�r�

�
(7)

The following equation must be satis�ed: V (y0) = u. This equation states the meaning

of the �exible-term contract: the �rm obtains a �xed reservation utility u, from cumulating

market pro�ts during an uncertain time interval. Hence we can derive the value yfl that

triggers the end of the contract, as follows

yfl = y0
�
1� u (r � �) y�10

� 1
1�� (8)

We move now to the comparison between T (y0) and T 0, where T (y0) is the expected

duration of the �exible-term contract, such that

T (y0) = E (�)

We need in this sense to analyze the discount factor (7). The right hand side of (7) is a

convex function of � . It follows by Jensen inequality that E (e�r� ) � e�rT (y0). We can then
write the following inequality

e�rT (y0) �
�
y0
yfl

��
, T (y0) �

�

r
ln

�
yfl
y0

�
(9)

From (8) and (9) we can write

T (y0) � ln
�
1� ur � �

y0

�� �
��1

1
r

(10)

With this result we can show the following.

Theorem 1. The expected duration T (y0) of the �exible-term contract and the duration T 0

of the �xed-term contract are such that T (y0) � T 0. T (y0) = T 0 if and only if � = 0.

Proof. Show �rst T (y0) � T 0. We calculate

ln

�
1� ur � �

y0

�� �
��1

1
r

� ln
 
1� u

�
y0
r � �

��1!� 1
r��

,

ln

�
1� ur � �

y0

� 1
r���

1
r

�
��1

� 1

From (4), (10) and the above inequality, T (y0) � T 0.
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Show now T (y0) = T 0 , � = 0. From T (y0) = E (�) and � = 0 we deduce T (y0) = � .

Also, from � = 0 and (6), we can write �
��1 =

r
r�� . Using (4), (10) together with T (y0) = �

and �
��1 =

r
r�� , we calculate

� = 0, E
�
e�r�

�
= e�rT (y0) , T (y0) = ln

�
1� ur � �

y0

�� �
��1

1
r

, T (y0) = T
0

�

The Appendix shows that the expression of T (y0) is

T (y0) =

8<: 1
�� 1

2
�2
ln
�
1� u (r � �) y�10

� 1
1�� ; if � > 1

2
�2

1; if � � 1
2
�2

(11)

Using (11), we show in Figure 1 how the expected contracting period of the �exible-term

contract diverge from the duration of the �xed-term contract.
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Figure 3: E (�)� T as a function of �

Dixit and Pindyck (1994) show that upper bound barriers often occur in economics

because of equilibrating mechanisms of the market. In a �exible-term contract, it is not

the market that puts a frontier on the value of the project but the contract, which speci�es

that the �rm is not allowed to obtain returns that are over the threshold u. In a �xed-term

contract, such barrier does not exist. This is why for the same reservation utility u that

must be given to the �rm, T (y0) � T 0.

4 Conclusion

We have shown that the expected duration of the �exible-term contract is higher than the

duration of the �xed-term contract. This result holds under the assumption that uncertainty
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lasts over more than two periods and the private �rm is risk neutral.

A natural continuation of this study would be to investigate the optimal contractual

regime. In particular, when the �rm is able to renegotiate the contract in bad state of

the world, as is usually the case in public-private partnerships, the cash �ow of the �rm

is bounded from below, both under �xed and �exible-term contract. One could investigate

which type of contract is second best optimal, given that the risk born by the �rm is limited

by renegotiation.

Furthermore, the literature on public-private partnerships has shown that there is a link

between contract duration and the incentives of the �rm to underinvest. Ceteris paribus the

�rm invests more if the duration is higher because cash �ows of each period are directly pro-

portional to the amount of their investment (see Iossa and Martimort, 2008). One can infer

from our result that the incentives to underinvest are not the same under �xed and �exible-

term contracts since they have distinct expected duration. It would be then interesting to

compare the incentives to invest under the two contractual regimes.

The analysis of both renegotiation and incentives to invest under �xed and �exible-term

contracts is left for further research.
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Appendix

Find Vfl (y)

From (1) and applying Ito�s lemma,

Ey (dVfl) = �yV 0fl (y) dt+
1

2
�2y2V "fl (y) dt (12)

The value of the project for any yt = y and y < yfl is

Vfl (y) = ydt+ Ey (dVfl) e�rdt (13)

From (12) and (13), we �nd the di¤erential equation

�yV 0fl (y) +
1

2
�2y2V "fl (y)� rVfl (y) + y = 0 (14)

The initial condition is Vfl (0) = 0. From (14) and the initial condition we can rewrite the

Bellman equation (13) as

Vfl (y) =
y

r � � + ay
� (15)

At y = yfl, we can write Vfl (yfl) = 0. Indeed, for any y � yfl the �rm does not obtain

any cash �ow because the contract ends. From the above expression of Vfl (y) and from

Vfl (yfl) = 0 one deduces

a = �
�
1

yfl

��
yfl
r � �

By replacing it in (15) we �nd the expression (5) in the main text.
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Find T (y0)

The demonstration follows closely Dixit (1993). We start from a random walk x, whose

expected intertemporal shift is

E [�x] = (p� q)�h;

where p is the probability of up move and q = 1� p the probability of down move. �x takes
values ��h, where �h > 0. Assume that xt can take values between a and b, a < b. We
denote i a natural number between �n and 0, where n > 0. i = �n corresponds to x = a
and i = 0 corresponds to x = b. The general formula for the states of the random walk as

function of the index i is x = b+ i ��h. Denote also Ti the expected time of a future event,
provided that the initial state is i. Ti satis�es the following di¤erence equation

Ti = �t+ qTi�1 + pTi+1: (16)

The expected time of any future event is the sum of the next step �t and the expected

remaining steps. With probability q the value y is reached from below and with probability

p is reached from above. This is a inhomogenious di¤erence equation. The homogeneous

part of (16) is similar to

Mi = qMi�1 + pMi+1:

We try a solution of the form Mi = �
i. Using p + q = 1 the equation is veri�ed for � = 1

and � = (q=p). These two solutions are independent if q 6= p, so that the general solution of
the homogenous equation is

Mi = A+B (q=p)
i : (17)

The constant of the di¤erence equation leads us to guess as particular solution

Ti = E � i+ F (18)

If we replace this in the original equation we �nd that (16) is veri�ed by whatever real value

F and by the value of E that solves

E = � �t

p� q : (19)

Using (17) (18) and (19) in (16), we can write the general solution of the di¤erence equation

as

Ti = �i
�t

p� q + A
0 +B (q=p)i
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The constants A0 and B are found from the boundary conditions. We use here that T�n =

T0 = 0, i.e., the extreme points n and 0 are absorbing barriers for the random walk process.

We �nd

Ti =
�t

p� q

 
�n 1� (q=p)

i

1� (q=p)�n
� i
!
:

We are interested in the situation in which the state x is bounded only from above, at b.

Therefore a = �1, which implies n =1. Calculating the limit of the above expression, we
can write

Ti =

(
�i �t

p�q ; if p > q

1; if p < q
: (20)

Remember that i � 0, so that Ti is non-negative, which makes sense.
We use this for �nding the time of a future event of an arithmetic Brownian motion.

De�ne �h = �
p
�t. Also, p� q = �

�2
�h. With these de�nitions, Dixit (1993) show that as

�t! 0 �x becomes an arithmetic Brownian motion of mean �dt and variance �dt. Replace

these de�nitions in (20), together with i = x�b
�h
. (20) becomes

T (x) =

(
b�x
�
, if � � 0;

1, if � < 0
: (21)

Move now from arithmetic to geometric Brownian motion, as in the main text. Use x =

ln (yt), where yt follows the geometric Brownian motion de�ned in the main text. Then, by

Ito�s lemma

dx =

�
�� 1

2
�2
�
dt+ �dz

where dz is a simple Brownian motion. Then � = � � 1
2
�2 and b = ln (yfl), so that (21)

becomes

T (y0) =

(
1

�� 1
2
�2
ln
�
yfl
y0

�
, if � � 1

2
�2;

1, if � < 1
2
�2

:

Replacing yfl from (8) we �nd the expression (11) in the main text.
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