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1. Introduction

A game is a potential game (Monderer and Shapley 1996) if it admits a
potential function, a real-valued function defined on the set of action pro-
files such that the change in any player’s payoff resulting from switching
actions is proportional to the change in the value of this function.1 The
best response correspondence of a potential game thus coincides with that
of a pure common interest game in which the payoff function of each player
is given by the potential function. A potential maximizer, an action profile
that maximizes a potential function, is a pure-strategy Nash equilibrium,
and this equilibrium does not depend on a particular choice of a potential
function.

Potential maximizers have nice “equilibrium selection” properties: Ui
(2001) shows that a unique potential maximizer is robust to incomplete
information (Kajii and Morris 1997), while Hofbauer and Sorger (1999,
2002) show that it is a unique equilibrium that is absorbing and globally
accessible under perfect foresight dynamics for small frictions (Matsui and
Matsuyama 1995). In 2 × 2 coordination games, potential maximization
agrees with risk dominance: that is, 2× 2 coordination games are potential
games, where the risk-dominant equilibrium maximizes the potential func-
tion. Beyond 2×2 games, however, the class of potential games is nongeneric
as they are defined by equalities.

In games with certain monotonicity properties, in particular in super-
modular games (also known as games with strategic complementarities),
the nice results have been proved (through versions of “comparison prin-
ciple”) to continue to hold in “generalized” potential games where those
equalities are replaced with certain inequalities. More precisely, Morris and
Ui (2005) introduce the concepts of monotone potential maximizer (MP-
maximizer) and local potential maximizer (LP-maximizer) and show that
an MP-maximizer of a supermodular game is robust to incomplete infor-
mation and so is an LP-maximizer if the game has diminishing marginal
returns (in which case LP-maximizer coincides with MP-maximizer). By
Oyama et al. (2008, OTH henceforth), an MP-maximizer of a supermodular
game is shown also to satisfy the stability condition under perfect foresight
dynamics.2 On the other hand, except for 2×2 games these generalized po-
tential conditions are typically not easy to inspect. Morris (1999) presents
an example of a symmetric 4 × 4 supermodular game that has no MP- or
LP-maximizer.3

1More precisely, such a game is called a “weighted” potential game, while it is called
an “exact” potential game if the payoff change is always exactly equal to the change in
the potential. In this note, the term “potential game” refers to the former.

2See also Oyama and Tercieux (2009) for further developments. Okada and Tercieux
(2008) show that in supermodular games, an LP-maximizer with constant weights is
stochastically stable under the log-linear dynamics of Blume (1993).

3Beyond two-player games, it has been known that asymmetric three-player unanimity
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In this note, we study MP- and LP-maximizers in symmetric 3×3 super-
modular coordination games. We first establish a generic existence and
a characterization of MP-maximizer for these games. Note that an MP-
maximizer, if any, is known to be unique in generic supermodular games
(OTH 2008). While those of LP-maximizer for this class of games have
been given by Morris (1999) and Frankel et al. (2003, FMP henceforth),
we also show that there is a non-empty open set of symmetric 3× 3 super-
modular coordination games that have two LP-maximizers, and these games
possibly satisfy own-action quasiconcavity (FMP 2003).

2. Definitions and Known Facts

By R, R+, and R++, we denote the set of real numbers, the set of nonnegative
real numbers, and the set of positive real numbers, respectively.

Let G = (I, (Ai)i∈I , (ui)i∈I) be an N ≥ 2 player supermodular game,
where I = {1, . . . , N} is the set of players, Ai = {0, 1, . . . , ni} the linearly
ordered set of actions for player i ∈ I, and ui : A =

∏
i∈I Ai → R the payoff

function for player i satisfying supermodularity : for all i ∈ I, all ai, a
′
i ∈ Ai,

and all a−i, a
′
−i ∈ A−i =

∏
j 6=i Aj ,

ui(a′i, a−i)− ui(ai, a−i) ≤ ui(a′i, a
′
−i)− ui(ai, a

′
−i)

whenever ai < a′i and a−i ≤ a′−i. For i ∈ I, denote by ∆(A−i) the set of
probability distribution over A−i. For a function f : A → R, a probability
distribution πi ∈ ∆(A−i), and a nonempty subset of actions A′

i ⊂ Ai, let

br i
f (πi|A′

i) = arg max
ai∈A′

i

f(ai, πi),

where f(ai, ·) is extended to ∆(A−i) by f(ai, πi) =
∑

a−i∈A−i
πi(a−i) f(ai, a−i).

When A′
i = Ai, we write br i

f (πi) = br i
f (πi|Ai). For a′i, a

′′
i ∈ Ai, we denote

[a′i, a
′′
i ] = {ai ∈ Ai | a′i ≤ ai ≤ a′′i }.

An action profile a∗ ∈ A is a (weighted) potential maximizer (Monderer
and Shapley 1996) of G if there exists a function v : A → R with v(a∗) > v(a)
for all a 6= a∗ such that for all i ∈ I, there exists µi ∈ R++ such that

µi

(
v(a′i, a−i)− v(ai, a−i)

)
= ui(a′i, a−i)− ui(ai, a−i).

Such a function v is called a potential function for a∗. Note that in this
case, br i

v(π) = br i
ui

(πi) holds for all i ∈ I and πi ∈ ∆(A−i). It is easy
to see that any game has at most one potential maximizer. We shall be
interested in two variants of the notion of potential maximizer due to Morris

games (Carlsson 1989, Morris and Ui 2005, OTH 2008, 2009) and symmetric 3 × 3 × 3
supermodular games (Takahashi 2008) may not have an MP- or LP-maximizer.
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and Ui (2005), monotone potential maximizer (MP-maximizer) and local
potential maximizer (LP-maximizer). We employ the simplified versions
and their refinements due to OTH (2008).

MP-maximizer and its refinement, strict MP-maximizer, are defined as
follows:

Definition 1. (a) Action profile a∗ ∈ A is an MP-maximizer of G if there
exists a function v : A → R with v(a∗) > v(a) for all a 6= a∗ such that for all
i ∈ I and all πi ∈ ∆(A−i),

min br i
v(πi|[0, a∗i ]) ≤ max br i

ui
(πi|[0, a∗i ]), (1)

and
max br i

v(πi|[a∗i , ni]) ≥ min br i
ui

(πi|[a∗i , ni]). (2)

Such a function v is called a monotone potential function for a∗.
(b) Action profile a∗ ∈ A is a strict MP-maximizer of G if there exists

a function v : A → R with v(a∗) > v(a) for all a 6= a∗ such that for all i ∈ I
and all πi ∈ ∆(A−i),

min br i
v(πi|[0, a∗i ]) ≤ min br i

ui
(πi|[0, a∗i ]), (3)

and
max br i

v(πi|[a∗i , ni]) ≥ max br i
ui

(πi|[a∗i , ni]). (4)

Such a function v is called a strict monotone potential function for a∗.

Notice that the ‘max’ (‘min’, resp.) in the right-had side of (1) ((2), resp.)
is replaced by the ‘min’ (‘max’, resp.) in the right-had side of (3) ((4), resp.).

A (strict) MP-maximizer is a (strict) Nash equilibrium, and a potential
maximizer is a strict MP-maximizer. A strict MP-maximizer is always an
MP-maximizer, and for a generic choice of payoffs, an MP-maximizer is a
strict MP-maximizer.

From OTH (2008), we have:4

Fact 1 (OTH 2008). A supermodular game can have at most one strict
MP-maximizer.

LP-maximizer and strict LP-maximizer are defined as follows:

Definition 2. (a) Action profile a∗ ∈ A is an LP-maximizer of G if there
exists a function v : A → R with v(a∗) > v(a) for all a 6= a∗ such that for all

4OTH (2008, Theorems 4.1 and 4.2) show that a strict MP-maximizer of a super-
modular game is a unique equilibrium that is absorbing and globally accessible under
perfect foresight dynamics when the degree of friction is small. Hence, a supermodular
game cannot have more than one strict MP-maximizers.
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i ∈ I, there exists a function µi : Ai \ {a∗i } → R+ such that if ai < a∗i , then
for all a−i ∈ A−i,

µi(ai)
(
v(ai + 1, a−i)− v(ai, a−i)

)
≤ ui(ai + 1, a−i)− ui(ai, a−i), (5)

and if ai > a∗i , then for all a−i ∈ A−i,

µi(ai)
(
v(ai − 1, a−i)− v(ai, a−i)

)
≤ ui(ai − 1, a−i)− ui(ai, a−i). (6)

Such a function v is called a local potential function for a∗.
(b) Action profile a∗ is a strict LP-maximizer of G if there exists a

function v : A → R with v(a∗) > v(a) for all a 6= a∗ such that for all i ∈ I,
there exists a function µi : Ai \ {a∗i } → R++ such that if ai < a∗i , then for
all a−i ∈ A−i,

µi(ai)
(
v(ai + 1, a−i)− v(ai, a−i)

)
≤ ui(ai + 1, a−i)− ui(ai, a−i), (7)

and if ai > a∗i , then for all a−i ∈ A−i,

µi(ai)
(
v(ai − 1, a−i)− v(ai, a−i)

)
≤ ui(ai − 1, a−i)− ui(ai, a−i). (8)

Such a function v is called a strict local potential function for a∗.

An LP-maximizer is a strict LP-maximizer if one can take strictly posi-
tive numbers for the weights µi.5

The game G is said to satisfy diminishing marginal returns (or own-
action concavity) if for all i ∈ I, all ai 6= 0, ni, and all a−i ∈ A−i,

ui(ai, a−i)− ui(ai − 1, a−i) ≥ ui(ai + 1, a−i)− ui(ai, a−i).

For a function v : A → R, let Gv = (I, (Ai)i∈I , (v)i∈I) be the game in which
all players have the common payoff function v. By Morris and Ui (2005)
(see also OTH 2008, Lemma 4.2), we have:

Fact 2 (Morris and Ui 2005). If the game G has a (strict) LP-maximizer a∗

with a (strict) local potential function v and if G or Gv satisfies diminishing
marginal returns, then a∗ is a (strict) MP-maximizer with the same function
v.

Therefore, from Fact 1 we have:

Fact 3 (OTH 2008). A supermodular game that satisfies diminishing marginal
returns can have at most one strict LP-maximizer.

5Morris (1999) and FMP (2003) give a slightly different definition of LP-maximizer,
which is weaker than strict LP-maximizer.
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In Section 3, we will show that a supermodular game without diminishing
marginal returns may have multiple strict LP-maximizers.

The notion of p-dominance (Kajii and Morris 1997), a many-player
generalization of risk-dominance, provides a sufficient condition for MP-
maximizer.

Definition 3. Let p = (p1, . . . , pN ) ∈ [0, 1)N .
(a) Action profile a∗ ∈ A is a p-dominant equilibrium of G if for all i ∈ I,

a∗i ∈ br i(πi) holds for all πi ∈ ∆(A−i) with πi(a∗−i) ≥ pi.
(b) Action profile a∗ is a strict p-dominant equilibrium of G if for all

i ∈ I, {a∗i } = br i(πi) holds for all πi ∈ ∆(A−i) with πi(a∗−i) > pi.

For p ∈ [0, 1), we say that a∗ is a (strict) p-dominant equilibrium if it is
a (strict) (p, . . . , p)-dominant equilibrium. In a 2×2 coordination game, the
risk-dominant equilibrium is a strict (p1, p2)-dominant equilibrium for some
(p1, p2) such that p1 + p2 < 1 (Kajii and Morris 1997; see also Morris 1999
or FMP 2003).

As shown by Morris and Ui (2005) (see also OTH 2008, Lemma 4.1), a
p-dominant equilibrium with low p is an MP-maximizer.

Fact 4 (Morris and Ui 2005). If a∗ is a (strict) p-dominant equilibrium with∑
i∈I pi < 1, then a∗ is a (strict) MP-maximizer with the (strict) monotone

potential v given by

v(a) =

{
1−

∑
i∈I pi if a = a∗,

−
∑

i∈C(a) pi otherwise,

where C(a) = {i ∈ I | ai = a∗i }.

Note that 2×2 coordination games generically have a (unique) strict MP-
and LP-maximizer. On the other hand, Morris (1999) shows that there is a
non-empty open set of symmetric 4 × 4 supermodular games that have no
MP- or LP-maximizer.6

In the next section, we obtain the generic existence of strict MP- (as well
as LP-) maximizer for the case inbetween, namely, the class of symmetric
3 × 3 supermodular coordination games. We also show that these games
may have multiple strict LP-maximizers.

6Morris (1999) presents an example of a symmetric 4×4 supermodular game satisfying
diminishing marginal returns that has no robust equilibrium in the sense of Kajii and
Morris (1997) (and it remains valid with a small perturbation of payoffs). Since, as shown
by Morris and Ui (2005), an MP-maximizer of a supermodular game must be a robust
equilibrium, it follows that this game has no MP-maximizer. Furthermore, since it satisfies
diminishing marginal returns, this game has no LP-maximizer, either.
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3. Symmetric 3 × 3 Supermodular Coordination Games

We consider symmetric 3 × 3 coordination games, where I = {1, 2}, A1 =
A2 = {0, 1, 2}, u1(h, k) = u2(k, h) for all h, k ∈ {0, 1, 2}, and all the action
profiles on the diagonal are Nash equilibria, i.e., u1(h, h) ≥ u1(k, h) for all k.
We assume strict supermodularity, i.e., u1(h′, k) − u1(h, k) < u1(h′, k′) −
u1(h, k′) if h < h′ and k < k′.

For h, k ∈ {0, 1, 2}, let

∆hk
h′k′ =

(
u1(h′, h) + u1(h′, k)

)
−

(
u1(k′, h) + u1(k′, k)

)
.

The inequality ∆hk
h′k′ > 0 means that action h′ is better than action k′

against the 50-50 mixture of actions h and k. Note that ∆kh
h′k′ = ∆hk

h′k′

and ∆hk
k′h′ = −∆hk

h′k′ . Note also that ∆hk
hk > 0 if and only if h pairwise

risk-dominates k.

3.1. MP-Maximizer

We have the following complete characterization (for generic games) of the
strict MP-maximizer. Recall from Fact 1 that a strict MP-maximizer is
unique if it exists. (The proofs of the Propositions are provided in the
Appendix.)

Proposition 1.
(1) ∆02

01 > 0 and ∆02
02 > 0: (0, 0) is the strict MP-maximizer.

(2) ∆20
21 > 0 and ∆20

20 > 0: (2, 2) is the strict MP-maximizer.

(3) ∆02
10 ≥ 0 and ∆02

12 ≥ 0:

(a) (0, 0) is the strict MP-maximizer if ∆01
01 > 0 and either (i) ∆12

12 ≥ 0
or (ii) ∆21

21 > 0 and ∆02
10/∆01

01 < ∆02
12/∆21

21.
(b) (1, 1) is the strict MP-maximizer if ∆10

10 > 0 and ∆12
12 > 0.

(c) (2, 2) is the strict MP-maximizer if ∆21
21 > 0 and either (i) ∆10

10 ≥ 0
or (ii) ∆01

01 > 0 and ∆02
10/∆01

01 > ∆02
12/∆21

21.

Thus, we have:

Result 1. Every generic symmetric 3× 3 supermodular coordination game
has a strict MP-maximizer.

In the cases (1), (2), and (3–b), the strict MP-maximizer is also a strict
p-dominant equilibrium for some p < 1/2, while in the other cases, there is
no p-dominant equilibrium with p < 1/2.
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3.2. LP-Maximizer

The generic existence of LP-maximizer has been shown by Morris (1999)
(see also FMP 2003).

Fact 5 (Morris 1999, FMP 2003). Every generic symmetric 3 × 3 super-
modular coordination game has at least one strict LP-maximizer.

This follows from the following classification reported in Morris (1999)
and FMP (2003), which they prove only for two cases. In the Appendix, we
provide a proof that covers all the cases.

Proposition 2.
(a) (0, 0) is a strict LP-maximizer if ∆01

01 > 0 and either (i) ∆12
12 ≥ 0 or

(ii) ∆21
21 > 0 and ∆02

10/∆01
01 < ∆02

12/∆21
21.

(b) (1, 1) is a strict LP-maximizer if ∆10
10 > 0 and ∆12

12 > 0.

(c) (2, 2) is a strict LP-maximizer if ∆21
21 > 0 and either (i) ∆10

10 ≥ 0 or
(ii) ∆01

01 > 0 and ∆02
10/∆01

01 > ∆02
12/∆21

21.

However, we show that this is only a partial characterization, in that
there is another strict LP-maximizer than the one described above in some
cases. More precisely:

Proposition 3.
(1) If ∆02

01 > 0, then (0, 0) is a strict LP-maximizer.

(2) If ∆20
21 > 0, then (2, 2) is a strict LP-maximizer.

These conditions (1) and (2) can be simultaneously satisfied by a non-
empty open set of symmetric 3×3 supermodular coordination games. Thus,
we have:

Result 2. There is a non-empty open set of symmetric 3× 3 supermodular
coordination games that have two strict LP-maximizers.

Observe that by supermodularity, ∆02
01 > 0 and ∆20

21 > 0 imply ∆01
01 > 0

and ∆21
21 > 0, respectively. Therefore, multiplicity occurs in subcases of the

cases (a–ii) and (c–ii) in Proposition 2. In these cases, the game cannot
have diminishing marginal returns, i.e., the inequalities, ∆02

01 > 0, ∆20
21 > 0,

u1(1, 0) − u1(0, 0) ≥ u1(2, 0) − u1(1, 0), and u1(1, 2) − u1(0, 2) ≥ u1(2, 2) −
u1(1, 2), cannot be simultaneously satisfied. On the other hand, the game
may satisfy the weaker property of own-action quasi -concavity (FMP 2003):
the game is said to be own-action quasiconcave if for all i ∈ I, the set
{ai ∈ Ai | ui(ai, a−i) ≥ c} is convex (i.e., it is written as [a′i, a

′′
i ] for some

a′i, a
′′
i ∈ Ai) for all a−i ∈ A−i and all constants c.

Example 1. Consider the following supermodular coordination game, which
satisfies own-action quasiconcavity, but not diminishing marginal returns:
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0

1

2

0 1 2

7, 7 0, 4 0, 0

4, 0 1, 1 2, 0

0, 0 0, 2 8, 8

Observe that ∆01
01 = 2, ∆21

21 = 5, ∆02
10 = −1, ∆02

12 = −2, so that ∆02
10/∆01

01 <
∆02

12/∆21
21, and ∆20

20 = 1. Thus, this game falls in Case (a–ii) in Proposition 2
(and in Case (2) in Proposition 1), and Proposition 3 applies.

This game has two strict LP-maximizers, (0, 0) and (2, 2), while (2, 2)
is the unique strict MP-maximizer (and 7/15-dominant). Local potential
functions are given by the following (the function (b) is also a monotone
potential function for (2, 2)):

0

1

2

0 1 2

13 4 0

4 7 6

0 6 12

(a) Local potential function for (0, 0)

0

1

2

0 1 2

7 4 0

4 3 2

0 2 8

(b) Local potential function for (2, 2)

When the game satisfies diminishing marginal returns (in which case a
strict LP-maximizer is unique by Fact 3), the unique strict LP-maximizer
is given by the classification of Proposition 2. This follows by verifying the
strict LP-maximizer given in the classification is also a strict MP-maximizer
as given in Proposition 1.

Remark 1. Example 1 is also a counterexample to Theorem 4 in FMP (2003),
which claims that an LP-maximizer of a supermodular game that satisfies
own-action quasiconcavity is noise-independent selection in global games:
the game in Example 1 shows that this claim contradicts the limit uniqueness
result of FMP (2003, Theorem 1). A correct statement should read that a
(strict) LP-maximizer of a supermodular game that satisfies diminishing
marginal returns (or own-action concavity) is noise-independent selection.
More generally, one can show that a strict MP-maximizer of a supermodular
game is noise-independent selection in global games.
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Appendix

We denote u1(h, k) = whk; thus ∆hk
h′k′ = wh′h + wh′k − wk′h − wk′k.

Proof of Proposition 1. Case (1): (0, 0) is a strict p-dominant equilibrium
with p < 1/2, so that Fact 4 applies.

Case (2): Symmetric with Case (1).
Case (3–a–i): A monotone potential function v for (0, 0) is the following:

0

1

2

0 1 2

ε∆01
01 ε(w01 − w11)

ε(w02 − w12)
+ (w21 − w11)

ε(w01 − w11) 0 w21 − w11

ε(w02 − w12)
+ (w21 − w11)

w21 − w11 0

where ε > 0 is sufficiently small. All entries but v(0, 0) are less than or equal
to zero (recall w02−w12 < w01−w11 ≤ 0 and w21−w11 ≤ 0 by assumption).
By verifying that

v(0, k)− v(1, k) = ε
(
u1(0, k)− u1(1, k)

)
,

v(1, k)− v(2, k) ≤ u1(1, k)− u1(2, k),
v(0, k)− v(2, k) ≤ u1(1, k)− u1(2, k)

for all k (let ε be sufficiently small, and use w20 − w10 < w21 − w11 and
∆12

12 ≥ 0), one can show that the conditions in Definition 1(b) (with a∗ =
(0, 0)) are satisfied.

Case (3–a–ii): A monotone potential function v for (0, 0) is the following:

0

1

2

0 1 2

ε ε + λ1(w10 − w00)
λ1(w02 − w12)

+ λ2(w12 − w22)

ε + λ1(w10 − w00) −λ2∆21
21 λ2(w12 − w22)

λ1(w02 − w12)
+ λ2(w12 − w22)

λ2(w12 − w22) 0

where ε > 0 is sufficiently small, and λ1 > 0 and λ2 > 0 are such that

∆21
21

∆01
01

<
λ1

λ2
<

∆02
12

∆02
10

9



(when ∆02
10 = 0, in which case ∆02

12 > 0, let ∆02
12/∆02

10 = ∞). This is the local
potential function given in Morris (1999). Verify that

v(0, k)− v(1, k) ≤ λ1

(
u1(0, k)− u1(1, k)

)
,

v(1, k)− v(2, k) ≤ λ2

(
u1(1, k)− u1(2, k)

)
,

v(0, k)− v(2, k) ≤ (λ2 + λ3)
(
u1(1, k)− u1(2, k)

)
for all k, where λ3 > 0 is such that

w22 − w12

w12 − w02
<

λ1

λ3
<

w10 − w20

w12 − w02
.

Case (3–b): (1, 1) is a strict p-dominant equilibrium with p < 1/2.
Case (3–c): Symmetric with Case (3–a).

Proof of Proposition 2. Case (a–i): The monotone potential function con-
structed in Case (3–a–i) in the proof of Proposition 1 works also as a local
potential function for (0, 0).

Case (a–ii–1): ∆01
01 > 0, ∆21

21 > 0, ∆02
10/∆01

01 < ∆02
12/∆21

21, and ∆02
10 ≥ 0.

The monotone potential function constructed in Case (3–a–ii) in the proof
of Proposition 1 works also as a local potential function for (0, 0).

Case (a–ii–2): ∆01
01 > 0, ∆21

21 > 0, ∆02
10/∆01

01 < ∆02
12/∆21

21, and ∆02
01 > 0.

Follows from Proposition 3(1).
Case (b): (1, 1) is a strict p-dominant equilibrium with p < 1/2. The

monotone potential function given in Fact 4 works also as a local potential
function for (1, 1).

Case (c): Symmetric with Case (a).

Proof of Proposition 3. Case (1): A local potential function v for (0, 0) is
the following:

0

1

2

0 1 2

∆02
01 w02 − w12 w02 − w12

w02 − w12 ε(w11 − w21) 0

w02 − w12 0 ε(w22 − w12)

where ε > 0 is sufficiently small. Verify that

v(0, k)− v(1, k) ≤ u1(0, k)− u1(1, k),
v(1, k)− v(2, k) ≤ ε

(
u1(1, k)− u1(2, k)

)
for all k.

Case (2): Symmetric with Case (1).
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