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1 Introduction

In a standard search and matching model, the labor market presents frictions, whereas
in the perfectly competitive product market the demand is infinitely elastic, so that an
increase in supply does not affect the equilibrium price (Mortensen and Pissarides 1999,
and Pissarides 2000).

In order to introduce a more realistic framework for the goods market, some scholars
(e.g. Joseph, Pierrard, and Sneessens 2004, and Pierrard 2005, and Cahuc and Zylberberg
2004, p. 618-622) abandon the assumption of an infinite elasticity of demand and consider
a two-tier productive scheme. Different types of workers (usually, low-skilled and high-
skilled ones) are hired in intermediate good sectors. Such goods face a decreasing demand
from a final representative firm that produces the unique consumption good1. Papers of
this kind make often use of numerical simulations and scant attention is paid to analytical
properties.

This paper takes a different stand. I consider a simplified framework in which there are
only two intermediate sectors and I look for the conditions under which a (unique) steady-
state equilibrium exists. Uniqueness is guaranteed by the assumption of constant returns
to scale (henceforth, CRS) in the final good function, whereas a sufficient condition for
the existence concerns the difference between the marginal productivity and the income
received when unemployed. If it is positive as the levels of labor market tightness in both
sectors tend to zero, then an equilibrium exists.

Since this condition is not fulfilled by imposing a Cobb-Douglas technology both in
the matching and in the production function, introducing such a functional form may
hinder the existence of an equilibrium.

2 The Model

2.1 Production Technology

Assume an economy with one final good (the numeraire), two intermediate goods sectors
and two types m and n of infinitely-lived and risk-neutral workers. The goods markets
are perfectly competitive. Each producer of an intermediate good hires only one type of
worker. Moreover, every m-skilled (respectively, n-skilled) employee produces one unit of
the intermediate good m (resp. n). So Ei (i ∈ {m, n}) denotes both the amount of the
i intermediate good produced and the number of employees in the i-th sector. The final
good production function exhibits CRS and is written as:

Y = F (Em, En), with
∂F

∂Ei

> 0 and
∂2F

∂Ei
2 < 0, i ∈ {m, n}. (1)

The two inputs are p-substitutes ( ∂2F
∂Em∂En

> 0).2 Let pi denote the real price of the
intermediate good i. Cost minimization in the final sector leads to pi = ∂F (Em, En)/∂Ei,
with i ∈ {m, n}. Further, the value of home production is denoted by bi > 0.

1Acemoglu (2001) has also constructed a similar model, but with one decisive difference: workers are
identical ex ante and can be employed in high-paid or low-paid jobs.

2I also assume one Inada condition: lim
Ei→0

∂F
∂Ei

= +∞. Imposing a condition as Ei → +∞ is useless,

since in this model the upper bounds of both inputs are given by the labor force that has a positive finite
value.
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2.2 Search Technology

The model is developed in steady state. Time is continuous and r denotes the discount
factor. Each type of worker can be either unemployed or be employed in his sector. The
labor market is perfectly segmented, meaning that every i-type worker can be hired only
by firms in the i sector. The matching function is written respectively Mi = m(Ui, Vi),
with Ui being the number of unemployed people and Vi the number of job vacancies in sec-
tor i. It is assumed to be increasing, concave and homogeneous of degree 1. Labor market
tightness is defined as θi ≡

Vi

Ui
. The job filling rate is q(θi) ≡ Mi/Vi = m( 1

θi
, 1), q′(θi) < 0,

whereas the job finding rate is equal to α(θi) ≡ Mi/Ui = θiq(θi), with α′(θi) > 0.3 At an
exogenous rate φi a match is destroyed. In steady state, the stocks of individuals in each
position are constant. With an exogenous size of the labor force, Li, the employment
level is given by:

Ei = Ei(θi) ≡
α(θi)

φi + α(θi)
· Li, i ∈ {m, n}. (2)

Notice that E′

i(θi) > 0 and, from the condition in footnote 3, limθi→+∞ Ei(θi) = Li.

2.3 Vacancy Supply and Wage-Setting Curves

Once a worker finds a firm with a vacant job, a surplus of the match arises. The Nash
bargaining solution is assumed in order to split the surplus, whereas a zero profit condition
is imposed on the demand side of the market.

The characterization of the model is standard. Hence, I directly present the equi-
librium equations (obtained by merging the so-called vacancy supply and wage-setting
curves) and refer to Pissarides (2000, chapter 1) for the primitive conditions under which
they are derived:

Gi(θi, θj) ≡ (1 − βi)

[

∂F

∂Ei

(Ei(θi), Ej(θj)) − bi

]

− ki

(

r + φi

q(θi)
+ βiθi

)

= 0, (3)

with i ∈ {m, n} , i 6= j, ki is the flow cost of posting a vacancy in units of final good,
and βi represents workers’ bargaining power. Function Gi = 0 is the equilibrium condi-
tion in labor market i and depends on θj only through the marginal productivity ∂F

∂Ei
.

Differentiating Gi with respect to θi , I obtain:

dGi

dθi

= Ai + Bi, (4)

with

Ai ≡ ki

[

(r + φi)
q′(θi)

q(θi)2
− βi

]

< 0 and Bi ≡ (1 − βi)
∂2F

∂Ei
2 · E′

i(θi) < 0,

i ∈ {m, n} . I also differentiate Gi with respect to Ej :

dGi

dθj

≡ Ci, j = (1 − βi)
∂2F

∂Ei∂Ej

· E
′

j(θj) > 0 with i, j ∈ {m, n} , i 6= j. (5)

3Moreover, I impose that limθi→0 q(θi) = +∞ and limθi→+∞ α(θi) = +∞.
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3 Equilibrium

3.1 Conditional Equilibrium in each market

The first existence result consists in showing under which assumptions there exists a θi

such that Gi(θi, θj) = 0 holds, conditional on θj.
Note that dGi

dθi
< 0 and limθi→+∞ Gi(θi, θj) → −∞ for the conditions imposed in

footnote 3 and the limit behavior of equation (2). This result holds for any value of
θj ∈ [0, +∞). If limθi→0 Gi(θi, θj) > 0 ∀θj ∈ [0, +∞), I could use the intermediate value
theorem to prove the existence of a conditional equilibrium. However, I can compute
such a limit only for values of θj that are not close to zero4. In fact, as both θi and θj

(and consequently Ei and Ej) tend to 0, the input of the marginal productivity takes an
indeterminate form5 0

0
and it is not possible to ascertain the sign of this expression6.

To rule out this possibility, two alternative assumptions are needed. Lemma 1 sum-
marizes the results.

Lemma 1 There always exists a θi ∈ (0, +∞) that solves Gi(θi, θj) = 0 ∀θj ∈ [0, +∞),
i, j ∈ {n, m} , i 6= j if, alternatively,:

1. limθi→0 Ei = Ei(θi) = 0 and ∂F
∂Ei

(Ei, Ej) > bi ∀ θi and θj ∈ [0, +∞) (except for
θi = θj = 0) with i, j ∈ {m, n} , i 6= j .

2. limθi→0 Ei = Ei(θi) = ǫi > 0, and ∂F
∂Ei

(Ei = ǫi, Ej = ǫj) > bi with i, j ∈ {m, n} ,
i 6= j. .

Proof.

CASE 1

Since limθi→0 Ei = Ei(θi) = 0, i ∈ {m, n} , the sets θi ∈ [0, +∞) and Ei ∈ [0, Li] are
respectively the domain and the range of the function Ei(θi).
Consider the term inside the square brackets in (3) as θj = 0; it is positive, decreasing in
θi ∈ (0, +∞), and tends to ∂F

∂Ei
(Li, Ej = 0) − bi > 0 as θi → +∞. The second term in

(3) is a ray starting from the origin and that tends to +∞ as θi → +∞.
So, there exists a θi ∈ [0, +∞) such that Gi(θi, θj = 0) = 0. The same reasoning can be
applied for any θj > 0.

CASE 2

Since limθi→0 Ei = Ei(θi) = ǫi > 0, the domain and range of the function Ei(θi) become
respectively θi ∈ [0, +∞) and Ei ∈ [ǫi, Li], i ∈ {m, n}. Imposing ∂F

∂Ei
(Ei = ǫi, Ej = ǫj) >

bi implies that limθi→0 Gi(θi, θj) > 0 ∀θj ≥ 0.
I can apply the intermediate value theorem and conclude that there exists a θi ∈ [0, +∞)
such that Gi = 0 ∀θj ∈ [0, +∞).

4In this case, it tends to infinity for the Inada condition in footnote (2) and if limθi→0 Ei = Ei(θi) = 0.
5Recall that the first derivatives of CRS functions can be expressed in terms of the ratio of the two

inputs.
6On the contrary, there are no difficulties as θj → +∞. This is because limθj→+∞ Ej = Lj and ∂F

∂Ei

takes a positive finite value as Ej = Lj. So there exists a θi > 0 that solves Gi(θi, θj → +∞) = 0.
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Some Examples

CASE 1: CES production function with s > 1.

Consider a CES production function with s > 1:

Y =
[

E
s−1

s
m + E

s−1

s
n

]

s
s−1

where
∂F

∂Ei

(Ei, Ej = 0) = 1 i, j ∈ {n, m} , i 6= j.

For Lemma 1 (CASE 1), imposing bi < 1 is sufficient to ensure the existence of a condi-
tional equilibrium.

CASE 2: CES matching function with s > 1.

Consider a CES matching function:

Mi =
[

V
s−1

s

i + U
s−1

s

i

]

s
s−1

and α(θi) =
[

θ
s−1

s

i + 1
]

s
s−1

i ∈ {n, m} .

If s > 1, limθi→0 Ei = Ei(θi) = Li

1+φi
. Imposing ∂F

∂Ei

(

Li

1+φi
,

Lj

1+φj

)

> bi, i, j ∈ {n, m} , i 6=

j, is sufficient to ensure the existence of a conditional equilibrium.

Cobb-Douglas technology.

A Cobb-Douglas production function Y = aEγ
nE1−γ

m does not belong to CASE 1. In fact,
∂F
∂Ei

= γY/Ei = 0 as Ej = 0, i, j ∈ {n, m} , i 6= j.

Similarly, with a Cobb-Douglas matching function Mi = aV γ
i U1−γ

i , α(θi) = aθγ
i , and

limθi→0 Ei = Ei(θi) = 0, so conditions of CASE 2 are not fulfilled.
Imposing a Cobb-Douglas formulation both in the the production and in the matching

technology implies that the conditional equilibrium in market i may not be satisfied for
values of θj close to 0. As we will see in the next paragraph, this may cause the absence
of the general equilibrium.

3.2 General Equilibrium

I first apply the implicit function theorem. Using (4) and (5), I get:

dθi

dθj







Gi=0
= −

Ci,j

Ai + Bi

> 0 with i ∈ {m, n} , i 6= j. (6)

Gi = 0 defines a monotonously increasing relationship in (θi, θj) space. At the general
equilibrium, the values of labor market tightness solve the following system:

{

Gn(θn, θm) = 0
Gm(θm, θn) = 0

(7)

Proposition 1 presents the results.

Proposition 1 If the conditions in Lemma 1 are satisfied, a steady state equilibrium
exists and is unique.

Proof.
I denote θm = gm(θn) the explicit function of Gm(θm, θn) = 0, and θm = gn(θn) the
explicit function of Gn(θn, θm) = 0. Both functions are monotonically increasing. Let
also θn = g−1

m (θm) and θn = g−1
n (θm) denote their inverse functions.
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EXISTENCE

For the conditions imposed in Lemma 1, there always exists a θm ∈ (0, +∞) that solves
Gm(θm, θn = 0) = 0. This is tantamount to writing that θm = gm(θn) has a positive
intercept in the vertical axis, that I denote with χm. Similarly, there always exists a
θn ∈ (0, +∞) that solves Gn(θm = 0, θn) = 0, implying that θm = gn(θn) has a positive
intercept in the horizontal axis, that I denote with χn.
Moreover, as noticed in footnote 6, there exists a θm ∈ (0, +∞) that solves Gm(θm, θn →
+∞) = 0. So, limθn→+∞ gm(θn) = Ψm ∈ ℜ+. Since there also exists a θn ∈ (0, +∞)
that solves Gn(θm → +∞, θn) = 0, one gets that limθm→+∞ g−1

n (θm) = Ψn ∈ ℜ+.
The domain and the range of θm = gm(θn) are respectively [0, +∞) and [χm, Ψm]. The
domain and the range of θm = gn(θn) are respectively [χn, Ψn] and [0, +∞). Since both
functions are monotonously increasing, they must intersect at least once (see Figure 1).

UNIQUENESS

I define H(θn) ≡ gm(θn) − gn(θn). If H(θn) is a monotonic function in the neighborhood
of the equilibrium steady-state, the equilibrium is unique.
Let θ∗m and θ∗m denote the equilibrium levels of tightness, H ′(θ∗n) = g′

m(θ∗n) − g′

n(θ∗n) < 0
is a sufficient condition for the uniqueness of the equilibrium. This implies:

dθm

dθn







Gn(θ∗n,θ∗m) =0
>

dθm

dθn







Gm(θ∗m,θ∗n)= 0
. (8)

From (6), one derives:
dθm

dθn







Gn(θ∗n,θ∗m)= 0
= −

B∗

n + A∗

n

C∗

n, m

(9)

dθm

dθn







Gm(θ∗m,θ∗n)= 0
= −

C∗

m, n

B∗

m + A∗

m

(10)

I multiply the numerator of (9) by the denominator of (10) and the numerator of (10)
with the denominator of (9). I get four positive terms on the LHS and only one positive
term on the RHS. For (8) to hold, the four positive terms on the LHS must be greater
than the term on the RHS. One of the term on the LHS is:

B∗

mB∗

n = (1−βm)(1−βn)
∂2F

∂Em
2 (E(θ∗n), E(θ∗m)) ·

∂2F

∂En
2 (E(θ∗m), E(θ∗n)) ·E′(θ∗m)E′(θ∗m) (11)

The positive term on the RHS is:

C∗

n, mC∗

m, n = (1 − βm)(1 − βn)

[

∂2F

∂Em∂En

(E(θ∗m), E(θ∗m))

]2

· E
′(θ∗m)E′(θ∗n). (12)

Expressions (11) and (12) are equal because of the Euler’s formula for functions with

constant returns to scale, that is ∂2F
∂En

2

∂2F
∂Em

2 =
(

∂2F
∂En∂Em

)2

. Then, inequality (8) is verified.

The equilibrium is unique.

4 Final Remarks

A Cobb-Douglas technology both in the matching and in the production function may
hinder the existence of a steady-state equilibrium. The reason is that the functions
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θm = gm(θn) and θm = g−1
n (θn) may not exist for values of respectively θn and θm close

to 0, point 1 of the existence proof cannot be established, and the two curves may not
cross each other. Figure 2 illustrates this case.

This is not a rare possibility. Consider a standard parametrization such as the one
performed by Cahuc and Zylberberg (2004, page 623) for this kind of models. The unit
of time corresponds to one year, r = 0.05, βi = 0.5, φi = 0.15, hi = 0.1 ∀i. The
matching function is Cobb-Douglas with a parameter γi = 0.5 ∀i. Contrarily to Cahuc
and Zylberberg (that consider a CES production function with elasticity of substitution
equal to 1.5), I impose a Cobb-Douglas formulation even in the production technology.
An is an efficiency parameter for workers in market n and it is equal to 1.5. For values
of bm ≥ 0.9 and bn ≥ 0.95, no equilibrium exists7.

Keeping the Cobb-Douglas formulation and imposing either bi = ρiwi with 0 < ρi < 1
or bi = 0 i ∈ {n, m} would not prevent from the absence of an equilibrium. The reason
is that, even under these hypotheses, the solution of the equation G(θi, θj = 0) = 0 is
indefinite the existence proof cannot be made8.

The results of Proposition 1 should be seen as a warning about the use of a standard
Cobb-Douglas technology in models of this kind.
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Figure 1: Existence and uniqueness of the equilibrium.

Figure 2: No equilibrium. On the Left: As θn → 0 (resp. θm → 0 ), the function gm(θn)
(resp. gn(θn) ) is not defined. On the Right: At the origin, the functions gm(θn) and
gn(θn) are not defined.

8


