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1. Introduction

This note contributes to the (small but growing) literature on tax compliance by
firms.1 Cremer and Gahvari (1999) assert that “it is widely believed that the presence
of tax evasion reduces tax revenues.” In this note, we show that this need not be the
case. We study the impact of tax enforcement on aggregate output and government
revenue when imperfectly competitive firms evade a specific output tax.2 We obtain
that aggregate output decreases with tax enforcement. For the family of linear demands,
government revenue increases with enforcement when the tax is low. When the tax is
high, government revenue is either inversely U-shaped or decreasing with enforcement. In
the latter case, we obtain the counter-intuitive result that government revenue is larger
with evasion than without evasion.

2. The model

We model a two-stage game.3 In the first stage, n identical, risk neutral, firms simulta-
neously decide how much to produce of a homogenous good. Firms have constant returns
to scale technologies, with the same marginal cost c. Given output decisions (q1, ..., qn), the
price adjusts to the level that clears the market. We denote by P (Q) the inverse market
demand, where Q =

P
i qi is aggregate output. The function P (Q) is twice-continuously

differentiable, with P 0 (Q) < 0 at all Q. In the second stage, taxation, evasion and tax
enforcement occur. Each firm i has to pay a specific tax of t > 0 per unit sold.4 We assume
that firm’s output is private information and that firms decide the fraction ei ∈ [0, 1] of
output that they report to the tax authority. We follow Cremer and Gahvari (1993) by
assuming that concealment of the fraction ei entails a cost5 of g(ei) per unit sold. The
function g is strictly increasing, convex, and verifies g(0) = 0 and g0(0) = 0. The gov-
ernment audits each firm with the same probability α ∈ (0, 1). Audits are costless6 and
perfect (i.e., they reveal the amount evaded with certainty). When a firm is not audited,

1Virmani (1989) and Cremer and Gahvari (1999) study the impact of tax evasion in a perfectly
competitive market whereas Marelli and Martina (1988), Bayer and Cowell (2006) and Goerke and Runkel
(2006, 2007) focus on settings with imperfect competition.

2Our model is similar to Goerke and Runkel’s (2007). But, as the goal of their paper is to analyze the
impact of competition on tax evasion, they do not study how enforcement affects aggregate output and
tax revenue.

3This assumption is made for expository convenience, as our results would carry through if production
and evasion decisions were simultaneous.

4Our qualitative results hold with proportional taxation.
5These costs arise from the necessity to buy specialist advice or avoidance schemes, or to reorganize

transactions, so that a casual inspection by the tax authority does not reveal the value of output sold.
6This assumption biases our results against finding a negative relation between enforcement and tax

revenue.
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it pays taxes based on the amount reported: t(1 − ei)qi. If audited, an evading firm has
to pay the tax that it legally owes, tqi, plus a fine which is a fraction λ of the amount of
taxes evaded.

3. Equilibrium production and evasion

We solve the model, starting with the second stage.

3.1 Evasion

In the second stage, each firm i chooses e∗i to maximize its expected profit

EΠi = αΠA
i + (1− α)ΠNA

i ,

where ΠA
i and ΠNA

i denote ex-post profits when firm i is (respectively, is not) audited. If
firm i is audited, its ex-post profit is

ΠA
i = [p (Q)− (1 + λei)t− g(ei)− c]qi,

whereas, if it is not audited,

ΠNA
i = [p (Q)− (1− ei)t− g(ei)− c]qi.

Rearranging, the expected profit is

EΠi = [p(Q)− (1− ei(1− ξ))t− g(ei)− c]qi

where ξ = α(1+λ) denotes the expected payment rate on undeclared tax, as a fraction of
t. From now on, we take ξ as our measure of tax enforcement. The following first-order
condition

∂EΠi

∂ei
= [(1− ξ)t− g0(e∗i )]qi = 0 (1)

characterizes the interior optimal fraction e∗i , which equalizes the marginal expected net
benefit from evading with the marginal cost of concealing. Observe that e∗i is independent
of any production variable chosen by the firm or determined in the market (as in Cremer
and Gahvari (1993)). Moreover, as firms are identical and are audited with the same
probability, they all evade the same amount. We gather these results in the following
proposition.

Proposition 1 Each firm fails to report a fraction of output e∗ when ξ < 1. Otherwise,
no firm evades.
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In order to evade, a firm has to face an expected rate of payment on undeclared tax
that is lower than unity. If this were not the case, evasion would not be optimal. Applying
the Implicit Function Theorem to (1), it is straightforward to show that the fraction e∗

decreases with enforcement ξ, as expected.

3.2 Equilibrium production

Given the production decisions of the other firms (q−i) and anticipating that it will
evade a fraction e∗, each firm i chooses its output qi to maximize its expected profit

EΠi = [p(Q)− c− et− g(e∗)]qi

where Q = qi +
P
−i q−i and et = t(1− e∗(1− ξ)) is the expected “effective” unit tax (as

opposed to the “legislated” tax t). Using the convexity of g and the first-order condition
(1), we obtain that et+ g(e∗) < t when ξ < 1,

so that evasion attenuates the impact of taxation, provided that ξ < 1. Straightforward
differentiation shows that

∂et
∂ξ
= t

∙
e∗ − ∂e∗

∂ξ
(1− ξ)

¸
> 0. (2)

The effective tax rate increases with enforcement through two channels: a direct “enforce-
ment effect” (first term in brackets in (2), which increases the expected payment rate on
undeclared sales) and an indirect “evasion effect” (second term in brackets in (2), which
decreases the fraction of sales undeclared).
The first-order condition for firm i is

∂EΠi

∂qi
= p (Q) + p0 (Q) q∗i − c− et− g(e∗) = 0,

fromwhich we see that p(Q)+p0(Q)q∗i > 0 in order to obtain an interior solution. Existence
and uniqueness of the Cournot equilibrium are ensured if we also assume

∂2EΠi

∂qi∂qj
= p0(Q) + qip

00(Q) < 0, i 6= j, (3)

(see Vives 1999).7

As firms are identical, production decisions q∗i are the same, the equilibrium is sym-
metric and we sum the n first-order conditions to obtain

[np (Q∗) + p0 (Q∗)Q∗] = n
£
c+ et+ g(e∗)

¤
. (4)

By the Maximum Theorem, Q∗ is a continuous function of the enforcement parameter ξ.
The Implicit Function Theorem allows us to obtain the following result.

7With this assumption, the second-order condition ∂2EΠi/∂q2i = [2p0(Q)+p00(Q)q∗i ] ≤ 0 automatically
holds.
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Proposition 2 When there is evasion, Q∗ decreases with enforcement ξ. Otherwise, Q∗

is independent of ξ.

Proof. See the Appendix

When ξ increases, the “effective” marginal cost c+et+ g(e∗) that firms face increases.
So, as shown by Seade (1985), for any market structure (i.e., number of firms n), each
firm produces less. Therefore, in equilibrium, aggregate output decreases.

4. The relation between tax enforcement and expected government revenue

Expected government revenue (including both taxes and fines) is defined as

R∗ = etQ∗,
and is a continuous function of the enforcement parameter ξ. The total effect of an increase
in ξ upon R∗ can be decomposed as follows

∂R∗

∂ξ
=

∂et
∂ξ

Q∗ + et ∂Q∗
∂ξ

. (5)

The first term on the right hand side of (5), which we dub the “tax effect”, measures
the positive impact of enforcement on fiscal revenues due to the increase in the effective
tax et. The second term, called the “base effect”, is negative since more enforcement
decreases total quantity (see Proposition 2). Therefore, the sign of ∂R∗/∂ξ is a priori
ambiguous. This has been noted by Cremer and Gahvari (1993) in the context of a
perfectly competitive market. But they only point out this ambiguity, without exploring
the possible forms of the curve R∗. This is precisely what we do. The next proposition
shows that, when the inverse market demand is linear and concealment costs are quadratic,
the curve R∗ has at most three forms, one for each parameter configuration of the model.

Proposition 3 Assume that P (Q) = a−bQ, where a > 0, b > 0 and g(e) = e2/2. Assume
further that t < a− c.8 There exist threshold values of t, denoted by bt = 2(a− c)/3 and

t1 =
³
3−

p
9− 16(a− c)

´
/4 such that:

(i) if t ≤ bt, then R∗ is increasing in ξ.

(ii) if bt < t ≤ min{t1, a− c}, then R∗ is inversely U-shaped in ξ.

(iii) if min{t1, a− c} ≤ t < a− c, then R∗ is decreasing in ξ.

8This assumption ensures that equilibrium production and profits are both positive for any value of
enforcement.
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Proof. See the Appendix

Observation of (5) suggests that the tax effect dominates for small values of the ef-
fective tax, while the base effect is more important for large values of et. Proposition 3
confirms this intuition. There exists a threshold bt = 2(a− c)/3 that separates when R∗ is
increasing from the two other cases of figure. This threshold is above t∗ = (a− c)/2, the
tax that maximizes fiscal revenues under full compliance.9

Then, when t is large enough (t > bt ), two different cases emerge, depending upon
the value of the maximal mark-up a− c. When a− c ≥ 1/2, the tax effect dominates for
low values of ξ (and thus of et ) while the base effect dominates for larger values of ξ: tax
proceeds are first increasing and then decreasing in the enforcement level. As t1 ≥ a− c,

(iii) is not pertinent. But, when a− c < 1/2, t1 < a− c. Thus, for even larger values of
t ≥ t1, tax proceeds monotonically decrease with ξ.We obtain the counter-intuitive result
that tax proceeds are always larger with evasion than without evasion. The reason for
this result is the following. As the maximal mark-up a− c is relatively small, Q∗ may be
too low. Thus, when t is sufficiently high, an increase in ξ causes a percent increase in et
lower than the percent decrease in Q∗.

Figure 1 illustrates Proposition 3 when P (Q) = 6 − Q, c = 5.6, and n = 10. With
this parameter configuration, bt = 0.267 and t1 = 0.347 < a− c = 0.4. Hence, R∗ adopts,
depending upon the value of the tax t, the three possible forms described in Proposition
3.

0.2 0.4 0.6 0.8 1
ξ

0.0175

0.02

0.0225

0.025

0.0275

0.03

0.0325

R

t=0.35

t=0.3

t=0.14

Figure 1: Expected government revenue as a function of enforcement ξ

9This result generalizes Cremer and Gahvari (1999), as they only find a negative relation between tax
evasion and tax revenue when t < t∗.
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Finally, observe that our results hold true for any value of n — i.e., that they do not
depend on market structure.
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Appendix

Proof of Proposition 2

Applying the Implicit Function Theorem, we differentiate (4) and we obtain, using an
envelope argument

∂Q∗

∂ξ
=

ne∗t

(n+ 1)P 0(Q∗) +Q∗P 00(Q∗)
. (6)

As
(n∗ + 1)P 0(Q∗) +Q∗P 00(Q∗) = P 0(Q∗) + n∗ [P 0(Q∗) + q∗P 00(Q∗)]
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and, from (3),
P 0(Q) + q∗P 00(Q) < 0,

then10

(n∗ + 1)P 0(Q∗) +Q∗P 00(Q∗) < 0.

This implies that ∂Q∗/∂ξ < 0

Proof of Proposition 3

When g(e) = e2/2, e∗ = (1− ξ)t. In what follows, we assume t < 1/(1− ξ), so interior
solutions for e∗ obtain. When P (Q) = a− bQ, first and second derivatives of P (Q) are

P 0(Q) = −b and P 00(Q) = 0,

which verify (3). Using (4) and e∗, the equilibrium production is thus given by:

Q∗ =
n

b (n+ 1)

"
(a− c)− t

Ã
1− t (1− ξ)2

2

!#
.

Assuming that t < a − c, equilibrium quantities and profits are non negative for any
enforcement level ξ. After some manipulation of (5), we obtain

∂R∗

∂ξ
=

ne∗t

−b(n+ 1)[M − 2(e
∗)2] (7)

where M = 3t − 2(a − c). The sign of this derivative is the opposite of the sign of the
expression in brackets. On the one hand, when t ≤ bt = 2(a − c)/3, ∂R∗/∂ξ is positive
for all ξ. On the other hand, when bt < t < (a − c), ∂R∗/∂ξ is positive (negative) when
ξ ≤ (>)ξ̂ = 1 − (1/t)

p
M/2. So R∗ is inverse U-shaped in ξ if ξ̂ > 0 and decreasing, if

ξ̂ < 0.
The conditions for ξ̂ > 0 (< 0) is that the polynomial defined by

Υ (t) = 2t2 − 3t+ 2 (a− c)

is greater (lower) than 0. When a− c ≤ 1/2, Υ (t) ≥ 0 if 2(a− c)/3 < t ≤ t1, where

t1 =
3−

p
9− 16(a− c)

4

andΥ (t) < 0 if t1 < t ≤ (a−c).When a−c > 1/2, Υ (t) ≥ 0 for any 2(a−c)/3 < t < a−c.
This leads to Proposition 3

10The condition (3) holds for any qi, qj , so, a fortiori, for the equilibrium value q∗.
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