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1 Introduction

In general, it is expected that a household will change its intertemporal consumption
allocation in response to changes in real assets returns. This relationship can be explained
by the intertemporal elasticity of substitution (IES) or relative risk aversion (RRA). Many
empirical studies still have an interest in the appropriate value of IES (see, for example,
Oshio and Kobayashi (2009)). Therefore, measuring a consumer’s IES (RRA) is one of
the most important economic problems economists face. Estimates of the IES (RRA) are
often based on the constant relative risk aversion (CRRA) utility function. Although there
is a consensus that the estimates of the IES (RRA) based on the CRRA utility function
cannot adequately explain movements in U.S., the same statement cannot be made for
Japanese data. For example, Hamori (1992, 1996) and Baba (2000) use Japanese monthly
or quarterly consumption data, and conclude that estimates of the IES (RRA) using the
Generalized Method of Moments (GMM) estimator perform well empirically, while Nakano
and Saito (1998) show that using Japanese semiannual consumption data the estimate of
the IES (RRA) is not significantly different from zero.

In the context of this previous empirical work on estimating the IES (RRA), the main
purpose of this paper is to resolve those two opposite stances in Japan. In particular, there
are two issues we consider in obtaining estimates of the IES (RRA) based on the CRRA
utility function. First, we investigate whether or not the frequency of consumption data
used affects estimates of the IES (RRA). This is because there is a possibility that con-
sumption data of a different frequency may produce different empirical results (for example,
Nakano and Saito (1998) and Baba (2000)). Thus, we use not only quarterly consumption
data, but also semiannual consumption data when we estimate the IES (RRA).

Secondly, we take into account the fact that the IES (RRA) is often estimated using a
two-step GMM estimator. However, it is widely known that the two-step GMM estimator
have weak instrument problems and poor small sample property problems. As for those
problems of the two-step GMM estimator, Yogo (2008) uses the Continuous Updating
Estimator (CUE) proposed by Hansen, Heaton, and Yaron (1996) because Newey and
Smith (2004) show that this estimator performs better in finite samples than the two-step
GMM estimator. Thus, we employ not only the two-step GMM estimator, but also the
CUE.

The estimates of the IES we obtain range from 0.2 to 0.5 when we use quarterly con-
sumption data and employ the CUE. We find that the IES is weakly identified when we
employ the two-step GMM estimator, while the CUE can identify the IES. The main rea-
son for this differing result may be that the CUE utilize more information of the dataset
than the two-step GMM estimator. Therefore, these results suggest that the estimates of
the IES in Japanese earlier studies may be not efficient and we can improve on the esti-
mates of the IES by using the CUE. Moreover, we obtain the same results as Nakano and
Saito (1998) that the estimate of IES is not significantly different from zero regardless of
the empirical method when we use semiannual consumption data. These results suggest
that consumption data of different frequency leads to quite different estimates of the IES.
However, we conclude that one plausible reason for these different results is that the larger
sample size available with quarterly data improves the efficiency of estimator.

This paper is organized as follows. In section 2, we describe our model and empirical
method. In section 3, we explain the data that our study uses. In section 4, we present
our empirical results. In the final section, we conclude with some remarks.
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2 Model and Empirical Method

In this section, we explain the model and empirical method used in this paper. The
representative consumer at time 0 is assumed to choose his/her life-time consumption and
asset holdings to maximize his/her expected utility subject to the budget constraint. The
consumer’s optimization problem is summarized as follows:

Max E0

[ ∞∑
t=0

βt
C1−γ
t − 1

1− γ

]
, 0 < β < 1, 0 < γ, (1)

s.t. Ct + ptAt = [pt + dt]At−1 + Yt, (2)

where Ct is real per capita consumption at time t, pt is the price of the asset at time t, dt
is the dividend of the asset at time t, At is the amount of the per capita asset held at time
t, Yt is real per capita labor income at time t, β is the subjective time discount factor, γ is
the relative risk aversion (RRA), and Et[·] is the expectation operator conditional on the
information available at time t. In equation (1), we assume that the utility function is of
the CRRA class. In CRRA utility functions, the IES is the reciprocal of the coefficient of
RRA.

By solving the above utility maximization problem, we can derive the following Euler
equation:

Et[β(
Ct+1

Ct
)−γ(1 + rt+1)− 1] = 0, (3)

where rt+1 is the real return of the asset at time t+ 1, which is defined as

rt+1 =
pt+1 + dt+1

pt
− 1. (4)

In order to estimate the parameters in the Euler equation, we employ the GMM estimator
proposed by Hansen (1982). Define the error term ut+1(θ) as

ut+1(θ) = β(
Ct+1

Ct
)−γ(1 + rt+1)− 1,

where θ = (β, γ)′. Let zt be an R × 1 vector of instrumental variables known at time t,
and define an R× 1 vector gt(θ) as

gt(θ) = ut+1(θ)zt, (5)

Then, the Euler equation implies
E[gt(θ)] = 0, (6)

where E[·] is the unconditional expectations operator. Moreover, if we define gT (θ) as

gT (θ) :=
1

T

T∑
t=1

gt(θ), (7)

where T is the sample size, then the GMM estimator of θ, θ̂GMM , minimizes the quadratic
form:

θ̂GMM = arg min
θ

gT (θ)′WTgT (θ), (8)
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where WT is an R×R weighting matrix, which is assumed to be positive definite for any
finite T .

We can obtain the most efficient GMM estimator by choosing the weighting matrix
WT = S−1, where S−1 is the inverse of the asymptotic covariance matrix of T 1/2gT (θ).
However, because we cannot observe the true value of θ, we cannot know S−1 either.
Therefore, we need to adopt a two-step GMM. In order to estimate S, we use the estimator
proposed by Newey and West (1987). Following Newey and West (1994), for the lag
selection criteria of the Newey-West estimator, we use int(4(T/100)2/9), where int(·) is the
integer part of the argument.

Furthermore, in order to analyze the goodness-of-fit of the model, we adopt Hansen’s
(1982) J test of overidentifying restrictions. Under the null hypothesis that equation (6) is
true, T times the minimized value of equation (8) is asymptotically distributed as χ2

R−K ,
where K is the number of parameters (that is, two in our case).

However, it is widely known that the two-step GMM estimator has poor small sample
properties. For example, Newey and Smith (2004) show that the CUE performs better
in finite samples than the standard two-step GMM estimator. Thus, we also employ the
CUE in addition to the two-step GMM estimator when we estimate the IES. The CUE
minimizes

θ̂CUE = arg min
θ

gT (θ)′[S(θ)]−1gT (θ), (9)

where [S(θ)]−1 = WT . For the CUE, the weighting matrix is continuously updated as θ
changes in the minimization process. The CUE θ̂CUE has the same asymptotic distribution
as the two-step GMM estimator.

3 Data

We construct three datasets labeled “Dataset 1” through “Dataset 3” in this paper
that differ in their choices of consumption. In all datasets long-term government bond
is treated as the asset in equation (2), and its total asset return (LGB) is obtained from
Ibbotson Associates. To compute the inflation rate, we use the total consumption deflator
published in the Annual Report on National Accounts. “Dataset 1”, quarterly data is used,
and for per capita consumption, we use “Total consumption (Benchmark year is 2000)”
divided by population which is reported in the Annual Report on National Accounts in
Japan. This per capita consumption data is seasonally adjusted using the X-12 ARIMA
procedure. As instrumental variables, we use the lagged values of the real return on the
asset, the consumption growth rate, and the growth rate of the deflator. The real asset
return and real consumption series are both computed using the total consumption deflator.
The sample period is from 1980Q2 to 2008Q4.

“Dataset 2” differs from “Dataset 1” only in the frequency of the data used. “Dataset
2” uses semiannual data which is also used in Nakano and Saito (1998) when they estimate
the IES. “Dataset 3” differs from “Datasets 1” only in the measure of consumption used.
“Dataset 3” uses quaterly data, but uses “Nondurable goods plus services” as consumption
data.

For both the two-step GMM and CUE, all variables that appear in the moment con-
ditions should be stationary. To check whether the variables satisfy stationarity, we use
the Augmented Dickey and Fuller (1981) (ADF) test. Table 1 provides some descriptive
statistics and the results of the ADF tests. For all the variables, the ADF test rejects the
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null hypothesis that the variable contains a unit root at conventional significance levels.
Although not reported, the Phillips and Peron (1988) test leads to similar results.

(Table 1 around here)

4 Empirical Results

Table 2 presents the empirical results using “Dataset 1” through “Dataset 3”. Table
2 shows that the CUE estimates of β and γ are statistically significant at conventional
levels only when we use “Dataset 1” or “Dataset 3”. The estimates of β range from 0.9895
to 0.9990, which are economically realistic; and the estimates of γ range from 1.9082 to
5.9981, implying estimates of the IES in the range 0.1667 to 0.5240. The p values for the
J test are large enough that we cannot reject the null that the moment conditions hold.
We have confirmed that the CUE estimation results are robust to changes of the initial
starting values. When we employ the two-step GMM, the estimates of β range from 0.9870
to 0.9923, which are economically realistic. The estimates of γ are not signficantly different
from zero regardless of the type of the dataset. In constrast to the CUE, we have confirmed
that the two-step GMM estimation results are not robust to changes of these initial values.
Then, we must explain the reason why the two-step GMM estimation does not work.

(Table 2 around here)

We can consider one plausible reason is that γ is weakly identified. To see this point,
Figures 1 and 2 provide three dimensional plots of the two-step GMM and CUE objective
functions (see, Hall (2005), for a similar example).

(Figures 1 and 2 around here)

Figure 1 suggests that the two-step GMM objective function be flat in the direction of
γ. On the other hand, in Figure 2 we can not ascertain whether the CUE is flat in the
direction of γ. Then, in Figures 3 and 4, two dimensional plots of the two-step GMM and
CUE objective functions as β and γ are varied to investigate whether these parameters are
weakly identified. We find that β is clearly identified regardless of the empirical method.
Menanwhile, we also find that the two-step GMM objective function is flat in the direction
of γ, but the CUE objective function is not.1 This figure supports our view that γ is weakly
identified when we employ the two-step GMM estimator, while the CUE can identify γ.
These results appear to be similar to Stock and Wright (2000). They show that if even
one parameter is weakly identified, all other parameters do not satisfy the consistency and
the asymptotic normality on two-step GMM estimation. Moreover, the main reason for
these differing results may be that the CUE utilize more information of the dataset than
the two-step GMM estimator.2 Therefore, this suggests that the estimates of the IES in
earlier studies be not correct and we can improve the estimates of the IES using the CUE.

(Figures 3 and 4 around here)

1We also attempt to test whether this result is changed when we adapt the different instrument variables
such as “per capita real investment growth rate”. The two-step GMM objective function is still found to
be flat in the direction of γ.

2Newey and Smith (2004) show that the CUE is one special case of the Generalized Empirical Likelihood
(GEL) estimator proposed by them.
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Table 2 also shows that the estimates of IES (RRA) are not significantly different from
zero regardless of empirical method when we use “Dataset 2”. These results are the same
as Nakano and Saito (1998). This suggests that consumption data of different frequency
leads to different estimates of the IES. One plausible reason for these differing results is
that the use of quarterly data increases the sample size leading to more efficient estimates.

5 Concluding Remarks

This paper has estimated the IES for Japan. We have specified the long-term gov-
ernment bond as the asset that the representative consumer invests in, and estimated the
Euler equation using the two-step GMM estimator and CUE. The estimates of the IES
we obtain range from 0.2 to 0.5 when we use quarterly consumption data and the CUE.
We find that the IES is weakly identified when we employ the two-step GMM estimator,
while the CUE can identify the IES. Moreover, we also find that using consumption data
of different frequencies leads to quite different estimates of the IES.
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Table 1: Descriptive Statistics and Unit Root Tests

D/S Variable Mean SD Min Max ADF CV

1
CGt 1.0033 0.0107 0.9569 1.0321 -10.8501

-3.9900rt 0.0153 0.0367 -0.1072 0.1157 -9.7831
πt 1.0018 0.0062 0.9916 1.0301 -7.1070

2
CGt 1.0069 0.0142 0.9668 1.0392 -5.9480

-3.1500rt 0.0129 0.0378 -0.1059 0.0768 -5.0237
πt 1.0038 0.0100 0.9878 1.0444 -3.2865

3
CGt 1.0027 0.0093 0.9759 1.0293 -11.5397

-3.9900rt 0.0142 0.0366 -0.1094 0.1132 -9.7101
πt 1.0029 0.0058 0.9907 1.0333 -7.4078

“D/S” denotes the dataset, “CGt” denotes the gross real per capita consumption growth, “rt” denotes
the real return on long-term government bonds, “πt” denotes the inflation rate, “SD” denotes the
standard deviation, and “ADF” denotes the Augmented Dicky-Fuller (ADF) test statistic. In comput-
ing the ADF test, we assume a model with a time trend and a constant. “CV” for “Dataset 1” and
“Dataset 3” denote the critical values at the 1% significance level for the ADF test for each sample
size. “CV” for “Dataset 2” also denotes the critical values at the 10% significance level for the ADF
test for sample size. The null hypothesis that each variable has a unit root is rejected at the 1% or
10% significance level, respectively.

Table 2: Empirical Results of two-step GMM and CUE

E/M D/S Lag β̂ SE(β̂) γ̂ SE(γ̂) p-value DF N

GMM

1
1 0.9870 0.0043 0.8046 0.9886 0.1293 2 114
2 0.9923 0.0037 2.4930 0.7290 0.3856 5 113
3 0.9908 0.0034 2.0854 0.6475 0.5440 8 112

2
1 0.9837 0.0063 -0.5468 0.7467 0.8471 2 56
2 0.9834 0.0051 -0.7591 0.6910 0.9917 5 55
3 0.9846 0.0032 -0.3710 0.3132 0.4542 8 54

3
1 0.9908 0.0050 1.8440 1.4922 0.2809 2 114
2 0.9920 0.0034 2.1630 1.0020 0.1380 5 113
3 0.9917 0.0033 2.1049 0.8279 0.3543 8 112

CUE

1
1 0.9895 0.0043 1.9082 0.9284 0.1158 2 114
2 0.9928 0.0039 2.8379 0.8056 0.3941 5 113
3 0.9931 0.0041 3.0717 0.8407 0.5457 8 112

2
1 0.9837 0.0063 -0.5585 0.7457 0.8476 2 56
2 0.9837 0.0052 -0.7218 0.6934 0.9895 5 55
3 0.9887 0.0041 0.3822 0.3812 0.5203 8 54

3
1 0.9967 0.0049 4.5588 1.7642 0.1450 2 114
2 0.9990 0.0051 5.8717 2.0190 0.2765 5 113
3 0.9990 0.0051 5.9981 1.8190 0.5417 8 112

“E/M” denotes the empirical method, “D/S” denotes the dataset used, “Lag” denotes the number of
lags of the instruments used, “β̂” denotes the estimate of the subjective discount rate, “γ̂” denotes
the estimate of the relative risk aversion (RRA), “SE(·)” denotes the Newey-West adjusted standard
error of “β̂” or “γ̂”, respectively, “p-value” denotes the p-value for Hansen’s (1982) J test statistics,
“DF” denotes the degrees of freedom for the J test, and “N” denotes the sample size. To compute
the two-step GMM and CUE estimates, R version 2.10.1 was used. In our study, we assume that
utility function is of the CRRA class. Therefore, the intertemporal elasticity of substitution (IES) is
the reciprocal of the coefficient of relative risk aversion (RRA). The starting values of the parameters
set equal to β = 1, γ = 1.
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Figure 1: GMM Objective Function for Dataset1 with Lag=1
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Figure 2: CUE Objective Function for Dataset1 with Lag=1
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Figure 3: Objective Function for Dataset1 with Lag=1 (γ is fixed)
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Figure 4: Objective Function for Dataset1 with Lag=1 (β is fixed)
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