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Abstract 

This paper investigates the asymptotic behavior of the t-ratio associated to an irrelevant variable in a three-variable 
cointegration analysis. It is proved that the t-ratio converges to a non-standard distribution suitable for statistical 
inference. Although the test-statistic is not pivotal when the innovations are serially correlated, Monte Carlo evidence 
suggests that the size distortion can be considerably mitigated by means of HAC standard errors.
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1. Introduction

The seminal concept of cointegration, first proposed by Granger (1981), Granger
and Weiss (1983) and Engle and Granger (1987), lead to an impressive development
of time-series econometrics. Following Stock and Watson (1988), a cointegrated re-
lationship can be understood as the commonality of a stochastic trend amongst the
variables. It is relatively well-known that standard inference by means of t-ratios
andF statistics cannot be drawn from a least squares-estimated (LS hereinafter)
cointegrated relationship.1 There are, however, several alternatives to deal with this
issue and Fully-Modified LS (Phillips and Hansen 1990, Phillips 1995) is certainly
one of the more important proposals.2 This methodology allows for statistical in-
ference throughout t-ratios andF statistics in cointegrated relationships. To the
best of our knowledge, little has been done in the study of underspecified coin-
tegrated relationships. Moreover, the evidence is limitedmainly to Monte Carlo
experiments (Banerjee, Dolado, Hendry, and Smith 1986, Andrade, O’Brien, and
Podivinsky 1994, Boswijk and Franses 1992, Cheung and Lai 1993, Podivinsky
1998). A relevant exception can be found in Pashourtidou (2003), who studies
the—asymptotic—consequences of omitting a relevant variable in a Johansen coin-
tegration test; the latter will“lead to either no detection of cointegrating relation-
ships, if the true cointegrating rank is smaller than or equal to the number of omitted
variables [. . . ] or the detection ofq < r cointegrating relationships [r is the coin-
tegrating rank], if the true cointegrating rank is greater than the number of omitted
variables.”3

In this paper we prove that statistical inference about the significance of the LS es-
timates associated to irrelevant variables in a cointegrated regression can be drawn
by means of the associated t-ratios, provided that the innovations are not autocor-
related. When the innovations happen to be serially correlated, statistical inference
cannot be drawn since the test statistic is not pivotal anymore; however, this can be
corrected—at least partially—simply by using Heteroskedasticity Autocorrelation
Consistent (HAC) standard errors.
The paper is organized in the following way: section 2 introduces the data generat-
ing processes (DGPs) we work with as well as the specifications of the regressions

1See, for example, Enders (2004), pp. 378-380.
2Fully-Modified LS may be succinctly described as the inclusion of lags and leads of the first-

differenced explanatory variables as regressors. It was developed in the context of a cointegration
estimation where the regressor is endogenous.

3Pashourtidou and O’Brien (2003) also studied the effect on the Johansen test when irrelevant
variables are included; they conclude that inference aboutthe cointegration rank is not affected.
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under study. Section 3 develops the asymptotics for different settings: (i) A three-
variable cointegrated relationship and an underspecified model that excludes a rel-
evant variable; (ii) A three-variable cointegrated relationship and a correctly speci-
fied model that includes all the relevant variables, and; (iii) A two-variable cointe-
grated relationship and an overspecified model that includes an irrelevant variable.
Monte Carlo evidence that supports our asymptotic results is discussed. Section 4
concludes.

2. Data Generating Processes and Specifications

We begin our study by specifying the data generating processes of the variables. Let
xt andzt be generated as driftless unit roots:

xt = X0 + ξxt (1)

zt = Z0 + ξzt (2)

whereX0 andZ0 are initial conditions,ξwt =
∑t

i=1 uwi, anduwt (for w = x, y, z)
is aniid white noise. We then define the cointegrated relationship ineq. (3).

yt = µy + βyxt + δyzt + uyt (3)

On the one side, whenδy 6= 0, zt is therefore a relevant variable in the cointegrated
relationship. On the other side, whenzt is excluded (this is, whenδy = 0), this
variable is irrelevant. Note that the variablesxt andyt are always cointegrated. We
further assume that the practitioner may includezt or not in his estimation exercise,
as marked in eqs. (5) and (4), respectively.

yt = α + βxt + ut (4)

yt = α + βxt + γzt + ut (5)

3. Asymptotics and Monte Carlo Evidence

In this section we prove that statistical inference on the estimated parameter associ-
ated to an irrelevant variable in a three-variable cointegration analysis can be drawn
by means of its associated t-ratio. This is done by studying the asymptotics of a LS
regression with two and/or three variables (see eqs. (4) and(5)), wherext, yt andzt

are generated by eqs. (1), (2) and (3), respectively (in the last DGP, the parameter
δy may be equal to zero or not). It is straightforward to show that omittingzt when
the variable is in fact a relevant one, biases the estimates of the—incomplete—
cointegrating vector:
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Proposition 1 Let xt, zt andyt be generated by eqs. (1), (2), and (3) withδy 6= 0,
respectively, and use them to estimate specification (4). Denote α̂ and β̂ the LS
estimates ofα andβ andtα̂, andtβ̂ their associated t-ratios. Then, asT → ∞:

• T−

1

2 α̂
d
→ δy

σz[
∫

ωz

∫
ω2

x
−

∫
ωx

∫
ωxωz]

∫
ω2

x
−(

∫
ωx)

2 ; T−

1

2 tα̂ = Op (1)

• β̂ − βy
d
→ δy

σz[
∫

ωz

∫
ωx−

∫
ωxωz]

σx

[∫
ω2

x
−(

∫
ωx)

2
] ; T−

1

2 tβ̂ = Op (1)

where
d
→ denotes convergence in distribution;ωw, for w = x, z, accounts for a

standard brownian motion,ωw(r), and,Op(·) refers to the order in convergence.

Proof: see appendix A.
The results in Proposition 1 are rather intuitive. When the model is underspeci-
fied (that is, when we omit a relevant variable), the cointegrating vector is poorly
estimated; both estimates do not converge to their true value. This is in line with
Pashourtidou’s (2003) asymptotic results as well as with the Monte Carlo evidence
obtained by Podivinsky (1998), who considers that:4 “(. . . ) all the tests[Johansen,
Dickey-Fuller and Durbin-Watson] can be misleading when the estimated model
is underspecified because too few relevant variables are included in the analysis.”
Podivinsky (as well as Pashourtidou) was referring, however, to the obtention of
evidence of cointegration. Yet, by adding Podivinsky’s (1998) Monte Carlo evi-
dence to our results, it could be said that, when the model is underspecified, not
only the parameter estimates–associated to the cointegrated variables included in
the specification–will not converge to their true values, but also there is a serious
risk of finding no evidence at all of cointegration. Notwithstanding this, the ra-
tios associated to the relevant (cointegrated) variables still diverge. If we were to
use standard critical values to test the null hypothesis of no significance, we would
eventually reject it for a sample size large enough.
On the other side, when we correctly specify the cointegrated regression, correct
inference can be drawn:

Proposition 2 Let xt, zt andyt be generated by eqs. (1), (2), and (3) withδy 6= 0,
respectively, and use them to estimate specification (5). Denote α̂, β̂, and γ̂ the
LS estimates ofα, β and γ, and tα̂, tβ̂ , and tγ̂ their associated t-ratios. Then, as
T → ∞:

4See Podivinsky (1998, p. 8).
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• α̂ − µy
p
→ 0; T−

1

2 tα̂ = Op (1)

• β̂ − βy
p
→ 0; T−1tβ̂ = Op (1)

• γ̂ − δy
p
→ 0; T−1tγ̂ = Op (1)

where
p
→ denotes convergence in probability.

Proof: see appendix A.
Propositions 1 and 2 point to the fact that omitting a relevant variable in the cointe-
gration equation flaws the statistical inference.
Furthermore, we prove that the inclusion of an irrelevant variable does not entail
severe consequences (at least not when compared with the consequences in the
previous scenario of an omitted relevant variable). This isin accordance to the
guidelines of the General-to-Specific specification-design strategy. Omitting rel-
evant variables is costlier that including irrelevant ones. Recall that Pashourtidou
and O’Brien (2003) proved that overspecification does not affect the detection of the
cointegrating rank. The following proposition further proves that the cointegrating
parameters converge to their true value and the estimate of the parameter associated
to the irrelevant variable collapses at rateT−1:

Proposition 3 Let xt, zt andyt be generated by eqs. (1), (2), and (3) withδy = 0,
respectively, and use them to estimate specification (5). Denote α̂, β̂, and γ̂ the
LS estimates ofα, β and γ, and tα̂, tβ̂ , and tγ̂ their associated t-ratios. Then, as
T → ∞:
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Proof: see appendix A.
The results of Proposition 3, together with those of Propositions 1 and 2, reinforce
the general conclusion of Podivinsky (1998, p.7): “Underspecifying the possible
number of variables in the cointegrating vector(s) seems tobe a risky strategy, as
it is more likely that if there are really more variables in the CI [Cointegrating]
vector(s), these vectors may not all be detected, or no vectors detected at all. Alter-
natively, possible overspecification of the number of relevant variables generally is
likely to result in detection of (at least) the true number ofCI vectors.” Our findings
complement those of Podivinsky and suggest that the inclusion of such irrelevant
variables may be tested by means of their associated t-ratios: the main result in
Proposition 3 lies in the asymptotic expression for the t-ratio associated tôγ. The
t-ratio, tγ̂ , converges naturally to a nonstandard, nuisance-parameter-free distribu-
tion under the assumption that the innovations are stationary iid processes. This
allows us to regard it as a potentially useful test statisticto test the null hypothesis
H0 : δy = 0. The asymptotic distribution has been non-parametricallyestimated
(see figure 1). Note that these results were obtained under the assumption ofiid in-
novations in the DGPs. Figure 1 also depicts the estimated asymptotic distribution
when the innovations,uxt anduzt, follow anAR(1) process.5 The presence of auto-
correlation in the regressors’ innovations does not seem toentail severe distortions
of the asymptotic distribution of the t-ratio under the nullhypothesis.
Critical values—assumingiid innovations in the DGP ofyt—under the null hypoth-
esis have been therefore computed using the asymptotic expression of the t-ratio
(Number of Replications:R = 100, 000, see Table I).

Table I: Asymptotic critical values fortγ̂ under the null hypothesis
Level Critical Value Level Critical Value
0.01 ±2.57 0.20 ±1.28
0.02 ±2.33 0.40 ±0.84
0.05 ±1.96 0.60 ±0.52
0.10 ±1.64 0.80 ±0.25

The finite-sample evidence shows that autocorrelated innovations in the regressors’
DGPs do not distort the level of the test. There is, however, aconsiderable size
distortion when the innovations ofyt are notiid. Table (II) in appendix B shows the
rejection rates of the t-ratio under the null hypothesis (panel a), as well as under the

5More precisely,uwt = φwuw,t−1 + ǫwt for w = x, z, | φw |< 1 andǫwt ∼ N
(
0, σ2

ǫ,w

)
.
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Figure 1: Asymptotic distribution under the null hypothesis: δy = 0. Case 1 (area):
innovations ofxt, yt andzt are iidN (0, 1); Case 2 (grey line): innovations ofxt

andzt are generated asAR(1) processes,φx = 0.7, φz = 0.5; innovations ofyt are
iidN (0, 1). Number of replications:10, 000. Sample size:100.

alternative hypothesis (panel b). Nevertheless, a second Monte Carlo experiment
reveals that the autocorrelation problem can be considerably mitigated if we use a
standard and well-known procedure; that is, if we compute HAC standard errors
(Newey and West 1987).
This procedure is analogous to the one a practitioner would employ in a classical
LS regression where the variables are stationary and there is evidence of autocor-
relation. In fact, similar size distortions using stationary variables have been docu-
mented by Granger, Hyung, and Jeon (2001), both, theoretically and through Monte
Carlo experiments.

4. Concluding Remarks

This paper proves that statistical inference in a three-variable cointegrating model
can be drawn by means of the t-ratios of the estimates. We obtained the asymptotic
distribution of the t-ratio associated to an irrelevant variable as well as the order in
convergence of a relevant one. Critical values were tabulated in the former case.
Curiously enough, Monte Carlo evidence suggests that the problem of autocorre-
lation in the specification can be controlled by employing HAC standard errors, a
rather classical tool.
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The results presented here could eventually ease the makingof statistical inference
in cointegrated relationships. It is known that underspecification may lead to the
failure in the detection of the cointegrating vector(s) whilst overspecification should
help in the detection of such cointegrating vectors; our results suggest that the inclu-
sion of an irrelevant variable in such a cointegrated systemcan be tested by means
of its t-ratio.

Appendix A: Proof of Propositions 1, 2 and 3

We present a guide on how to obtain the order in probability ofProposition 2. The
asymptotics of the remaining Propositions can be obtained by following these steps.
Let xt, zt andyt be generated by eqs. (1), (2), and (3) withδy 6= 0, respectively,
and use them to estimate specification (5). The expressions needed to compute the
asymptotic value oftγ̂ statistic are:6
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T∑

t=1

xtzt
d
→ σxσz
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∑
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∑
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xtzt + δy

∑
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∑
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6All sums are fromt = 1 to T unless otherwise specified.w = x, z.
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and,
∑

y2
t = µy

∑

yt + βy

∑

xtyt + δy

∑

ztyt +
∑

ξx,t−1uyt +
∑

ξz,t−1uyt

As for the stochastic sums, most results can be found in Phillips (1986), Durlauf
and Phillips (1988) and Phillips and Ouliaris (1990).
The previous elements allow for the programming of all thosesums required to
study the asymptotic behavior of the regression. These—MathematicaTM—programs
can be downloaded from:
http://dl.dropbox.com/u/1307356/Arxius%20en%20la%20 web/Appendix_EB/OmVar.pdf

Lower-order terms (Op

(
T 1/2

)
, for instance) have been excluded in the expressions

because their inclusion blocks the execution of the code.
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Appendix B: Monte Carlo Evidence

Table II: Rejection rates of the test statistic: LS standarderrors.
Panel (a)

Hypothesis Parameters Sample Size
δy ρx, ρz ρy 50 100 200 300 500

H
0

:
δ
y

=
0

0.00

0.00;0.00
0.00 0.06 0.05 0.05 0.05 0.05
0.30 0.14 0.16 0.14 0.14 0.14
0.70 0.36 0.37 0.38 0.39 0.40

0.10;0.20
0.00 0.05 0.05 0.04 0.04 0.04
0.30 0.13 0.14 0.14 0.16 0.15
0.70 0.35 0.39 0.41 0.40 0.38

0.50;0.60
0.00 0.04 0.05 0.04 0.04 0.04
0.30 0.14 0.13 0.16 0.14 0.14
0.70 0.35 0.41 0.39 0.41 0.40

Panel (b)

H
a

:
δ
y
6=

0

-0.50

0.00;0.00
0.00 0.96 0.99 1.00 1.00 1.00
0.30 0.93 1.00 1.00 1.00 1.00
0.70 0.80 0.96 0.99 1.00 1.00

0.10;0.20
0.00 0.98 1.00 1.00 1.00 1.00
0.30 0.97 1.00 1.00 1.00 1.00
0.70 0.88 0.99 1.00 1.00 1.00

0.50;0.60
0.00 0.99 1.00 1.00 1.00 1.00
0.30 0.99 1.00 1.00 1.00 1.00
0.70 0.97 1.00 1.00 1.00 1.00

0.50

0.00;0.00
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.10;0.20
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.50;0.60
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

1.00

0.00;0.00
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.10;0.20
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.50;0.60
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00
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Table III: Rejection rates of the test statistic: HAC standard errors.
Panel (a)

Hypothesis Parameters Sample Size
δy ρx, ρz ρy 50 100 200 300 500

H
0

:
δ
y

=
0

0.00

0.00;0.00
0.00 0.11 0.10 0.08 0.06 0.06
0.30 0.16 0.12 0.09 0.10 0.08
0.70 0.27 0.23 0.19 0.16 0.13

0.10;0.20
0.00 0.12 0.10 0.06 0.07 0.06
0.30 0.16 0.12 0.10 0.08 0.07
0.70 0.29 0.21 0.19 0.16 0.15

0.50;0.60
0.00 0.12 0.10 0.07 0.07 0.07
0.30 0.16 0.12 0.10 0.09 0.09
0.70 0.29 0.26 0.19 0.19 0.15

Panel (b)

H
a

:
δ
y
6=

0

-0.50

0.00;0.00
0.00 0.97 1.00 1.00 1.00 1.00
0.30 0.94 0.99 1.00 1.00 1.00
0.70 0.76 0.94 0.99 1.00 1.00

0.10;0.20
0.00 0.99 1.00 1.00 1.00 1.00
0.30 0.97 0.99 1.00 1.00 1.00
0.70 0.85 0.97 1.00 1.00 1.00

0.50;0.60
0.00 0.99 1.00 1.00 1.00 1.00
0.30 0.99 1.00 1.00 1.00 1.00
0.70 0.99 0.99 1.00 1.00 1.00

0.50

0.00;0.00
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.10;0.20
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 0.99 1.00 1.00 1.00 1.00

0.50;0.60
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

1.00

0.00;0.00
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.10;0.20
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00

0.50;0.60
0.00 1.00 1.00 1.00 1.00 1.00
0.30 1.00 1.00 1.00 1.00 1.00
0.70 1.00 1.00 1.00 1.00 1.00
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