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Abstract 

We study spatial competition in two-sided markets, in which platforms engage in price competition in a circular city. 
After analyzing the pricing and profits of the unique symmetric equilibrium for a given number of platforms, we derive 
the number of platforms under free entry and compare it with the social optimum. We consider the case with or 
without a price restriction. In contrast to the excess entry result in Salop's (1979) model, the number of platforms is 
smaller than the social optimum if a minimum price binds, and if cross-group network effects are sufficiently large for 
a group of agents.
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1 Introduction

There are markets in which intermediate service providers, or platforms, are
required for two groups of agents to transact with an opponent. These mar-
kets are two-sided markets. Examples of two-sided markets include the mag-
azine market (readers and advertisers), the classifieds markets (i.e., yellow
pages) (users and firms), the nightclub market (men and women), and the
telecommunications market (callers and receivers), among others.1 In these
markets, a platform attracts groups of agents and promotes transactions in
order to generate a surplus. Central issues include how platforms behave and
how the results affect welfare.
Competition that is limited to two platforms has been studied previously

(see Armstrong 2006, Armstrong and Wright 2007 and Anderson and Coate
2005). If a potential entrant finds it profitable to enter, entry should occur,
and it is natural to consider entry and competition among many platforms.2

Accordingly, we investigate competition among three or more platforms by
adopting Salop’s (1979) circular city model, which adopts a game theory
framework. First, platforms simultaneously decide whether to enter, and en-
tering platforms are symmetrically settled in a circle. In the second stage,
those platforms set membership prices for two groups of agents, sellers and
buyers, who are uniformly located on the circle. In the third stage, sellers
and buyers simultaneously choose whether to join, at most, one platform or
not. The agent’s payoff consists of membership fees, transportation costs,
and utility from cross-group network effects. Cross-group network effects
are defined as the positive externality from the number of the other group’s
agents who join the same platform.3 We derive a unique symmetric sub-
game perfect equilibrium for a given number of platforms. We discuss how
the equilibrium price for buyers and sellers is affected by cross-group network
effects of sellers and buyers, respectively. If cross-group network effects of
sellers are larger than that of buyers, platforms are in greater price compe-

1Free magazines and newspapers have been growing in Japan. About 40
percent of free magazine and newspaper operations were launched in the 2000s
(http://www.jafna.or.jp/freepaper/freepaper 3.html). Magazines provide readers with em-
ployment information, such as job openings. Therefore, magazines connect readers and
firms that need workers.

2With the exceptions of price restriction and multihoming, Armstrong and Wright
(2007) are the same as Armstrong (2006). Anderson and Coate (2005) investigate the
competition between two broadcasting platforms with negative cross-group network effects.
They discuss the conditions in which one or two platforms are in the market.

3Cross-group network effects are evident in many two-sided markets. In magazines,
readers appreciate a greater number of job openings, whereas firms that post job openings
value a magazine’s employment classifieds if it has a larger reader base.
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tition for buyers and extract a surplus from sellers, because platforms can
attract many sellers by obtaining one buyer. After analyzing the equilibrium,
we derive the number of platforms under conditions of free entry. Free entry
in two-sided markets has never been discussed. Compared with the social
optimum, there are an excess number of entering platforms. This result is
an extension of Salop (1979) and Navon et al. (1995).
Platforms set a negative equilibrium price for buyers, for example, if the

cross-group network effects of sellers are sufficiently large. However, setting
negative prices may not be feasible. We thus consider the case in which
price is restricted by a lower boundary, such as the case of non-negative
prices.4 This restriction is considered in Armstrong and Wright (2007) and
Anderson and Coate (2005). To see how price restriction affects equilibrium
behavior, consider a seller’s price that is bound by a minimum price. This
restriction limits each platform’s ability to attract sellers by lowering prices.
This induces platforms to reduce prices for buyers in order to attract sellers
through cross-group network effects. Therefore, the equilibrium price for
sellers (buyers) is higher (lower) than that without the restriction. The effect
on profits is ambiguous. However, whether each platform’s profit increases
depends on the relative size of the profit increase from sellers and the profit
decrease from buyers.
With price restrictions, we also derive the number of platforms under

free entry. We find that the number of platforms is smaller than the so-
cial optimum, if the minimum price binds and cross-group network effects
are sufficiently large for a group of agents.5 Under these conditions, platform
profits are considerably reduced, because an increase of profit from one group
is smaller than a decrease of profit from the other group. An entering plat-
form can earn smaller profits and thus has fewer incentives to enter, therefore
resulting in a lower propensity to enter.
In section 2, we set up the model of two-sided markets with many plat-

forms and derive equilibria given the number of platforms. Section 3 analyzes
the consequences of free entry. Section 4 concludes.

4In this model, we can also consider maximum prices. An example of a maximum price
is a price cap. Regulators impose price caps on telecommunications companies to provide
incentives for cost reduction (see Laffont and Tirole 2000).

5In addition, if the maximum price binds and cross-group network effects are sufficiently
large for sellers, excess entry is generated, because the cross-group network effects intensify
profits from buyers.
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2 Model

There are m ≥ 3 homogeneous platforms. Each platform is located equidis-
tant from each other on the unit circle. There are two groups of agents,
sellers (S) and buyers (B). Each agent is distributed uniformly on the circle
and needs to join a platform to meet an agent from the other side. In this
model, assume that each agent joins one platform. To join the platform,
each agent incurs transportation costs per unit of distance tk > 0, k = S,B.
An agent who joins the platform obtains cross-group network benefits bk > 0
multiplied by the number of other side agents who join the same platform.
The utility of an agent who is located at distance xk ∈ [0, 1/m] from platform
i is:

uik = ak + bkn
i
j − pik − tkxk,

where pik is the price to join platform i and nij is the number of agents in
group j, j 6= k. The agent from group k receives sufficiently large common
benefits ak when that agent joins a platform.
Given that each agent participates in a platform, an agent in group k

is indifferent between joining platform i and joining neighbor platform i +
1 if pik + tkxk − bknij = pi+1k + tk(1/m − xk) − bkni+1j . Note that there is
another neighbor platform i − 1 and the associated indifference condition
holds. Suppose that price p̃k is set by platforms other than i, and each
platform other than i, i + 1, and i − 1 has 1/m market share. The number
of agents k who join platform i+ 1 is therefore: ni+1k = (1/m− xk) + 1/2m.
Group k’s demands for platform i are:6

Di
k(p

i
k, p̃k, n

i
j, n

i+1
j ) ≡ nik =

1

m
+
4tj(p̃k − pik) + 6bk(p̃j − pij)

4tktj − 9bkbj . (1)

The profit of platform i is:

πi = (piS − cS)niS + (piB − cB)niB − f, (2)

where ck > 0 is constant marginal cost and f > 0 is the fixed cost associated
with setting up a platform. Substituting (2) with (1), and maximizing (2)
with respect to pik:

∂πi

∂pik
=
1

m
+
4tj(p̃k + ck − 2pik) + 6bk(p̃j − pij)− 6bj(pij − cj)

4tktj − 9bkbj = 0.

We assume the following inequality to satisfy the second-order condition,7

6If there are two paltforms in the market, demand for platform i becomes 1/2+[tj(p
2
k−

p1k) + 2bk(p
2
j − p1j )]/(tktj − 4bkbj) due to the fact that the competing platforms at the two

marginal agents are the same.
7This is similar to Armstrong (2006), (2tS +2tB)

2− 16tStB = (2tS − 2tB)2 ≥ 0, (2tS +
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16tStB > 9(bS + bB)
2. In a symmetric equilibrium, each platform charges the

same price for each group pik = p̃k = pk, rewriting the first-order conditions,

pk = ck +
tk
m
− 3bj
2tj

µ
pj − cj + 3bk

2m

¶
. (3)

The following proposition derives from these conditions.

PROPOSITION 1 If each agent contracts with a platform, there is a sym-
metric equilibrium. Symmetric equilibrium prices and the profit are:

pS = cS +
tS
m
− 3bB
2m

, pB = cB +
tB
m
− 3bS
2m
, (4)

π =
2tS + 2tB − 3bS − 3bB

2m2
− f. (5)

The equilibrium prices (4) and those in Armstrong (2006) share similar
features.8 However, there are two big differences between his model and
ours, which are the number of marginal agents and the degree of competition
stemming from the number of platforms. To see the differences between
these models, let us rescale the circumference of the circle in order to have
each platform locates at one unit of length from the neighboring platform.
Therefore, the circumference is equal to the number of platforms.9 Now,
consider the case of two platforms on the circle, and suppose platform 1
obtains a seller from platform 2.10 Then, by the cross-group network effects,
the utility of each buyer in platform 1 increases by bB but that in platform 2
decreases by the same amount. The same utility change occurs in Armstrong,
but its implication about pricing is different, since each platform has two
marginal buyers in our model. The influence of cross-group network effects
on our equilibrium prices with two platforms is twice as much as that on
Armstrong. Next, consider the case of three or more platforms on the circle,
and suppose platform i obtains a seller from platform i + 1. Platform i
competes with the two neighboring platforms, i+ 1 and i− 1, on the circle.
The utility change for buyers between platform i and i+1 is similar to that in
two-platform case. However, the utility change of buyers between platform i
and i− 1 is half, since the number of sellers in platform i− 1 is unchanged.
This is why the influence of cross-group network effects on our equilibrium

2tB)
2 ≥ 16tStB > 9(bS + bB)2. Therefore, 2tS +2tB − 3bS − 3bB > 0. 16tStB − 36bSbB >

9(bS+ bB)
2−36bSbB , 4(4tStB−9bSbB) > 9(bS − bB)2 ≥ 0. Therefore, 4tStB−9bSbB > 0.

8Armstrong shows the equilibrium price of agent k as pk = ck + tk − bj , in his model
of Hotelling-type two-platform competition.

9Making this adjustment for (4), new equilibrium prices become pk = ck + tk − 3bj/2.
10In two-platform competition with rescaling, the equilibrium prices are pk = ck + tk −

2bj , due to the difference in the demand function. See footnote 6.
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prices with three or more platforms is one and a half times as much as that
on Armstrong.
If cross-group network effects disappear from our model, a platform faces

two independent circular cities. The equilibrium price and profit are the same
as Salop’s (1979) model,11 which are pk = ck+ tk/m and π = (tS + tB)/m

2−
f . Compared with (4) and (5), the equilibrium prices and profit in two-
sided markets are decreased by the cross-group network effects. Cross-group
network effects promote competition among platforms.12

We consider another pricing mechanism, in which platforms maximize
profit when a price for one group is restricted by a minimum (or maximum)
price, p̂k. A typical example of minimum prices is a non-negative price. In
free magazines or yellow pages, levying charges for readers is not feasible.13

The following proposition derives from these conditions.

PROPOSITION 2 When the price of a seller is restricted,14 symmetric
equilibrium prices and the profit of platform are:

pS = p̂S, pB = cB +
tB
m
− 3bS
2tS

µ
p̂S − cS + 3bB

2m

¶
, (6)

π̂ =
4tStB − 9bSbB − 2(2tS − 3bS)(cS − p̂S)m

4tSm2
− f. (7)

In Proposition 1, if platform i collects a large profit from buyers by ob-
taining a seller, platform i sets a negative price for sellers and a high price for
buyers. Suppose a seller’s price is bound by a minimum price. Each platform
can not attract sellers by lowering prices for this restriction. Platforms re-
duce prices for buyers in order to attract sellers through cross-group network
effects. Whether each platform’s profit increases depends on the relative size
of the profit increase from sellers and the profit decrease from buyers.
In equilibrium, market shares of platform i are 1/m. We therefore com-

pare profits with and without restriction, by comparing the sum of equilib-
rium prices. We define buyer price with a restriction, (6), as p̄B. Subtracting
the sum of equilibrium prices without the restriction from that with the re-
striction equals (p̂S+ p̄B)− (pS+pB) = (1−3bS/2tS)(p̂S−pS). If the number
of obtainable sellers when a platform obtains a buyer is larger than one, prof-
its with the minimum (maximum) price restriction are smaller (respectively,

11Navon et al. (1995) investigates Salop’s (1979) model by using one group of agents
with network effects.
12The equilibrium is not influenced by the common benefit as in Salop (1979).
13Rysman (2004) shows an empirical analysis for the yellow page market.
14We focus on a restriction on sellers. We can discuss a restriction on buyers accordingly.
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larger) than that without the restriction. Otherwise, profits with the mini-
mum (maximum) price restriction are larger (respectively, smaller) than that
without the restriction.
We focus on the case in which the number of obtainable sellers when a

platform obtains a buyer is larger than one. When sellers are bound by a
minimum price, platform profits from sellers increase. On the other hand,
platforms actively compete for buyers because a platform obtains more than
one seller when the platform obtains a buyer. A decrease in profits from
buyers is larger than an increase in profits from sellers. Therefore, platform
profits with the restriction are smaller than that without the restriction.15

Consider how profit responds to a change in the restriction of prices,
∂π̂/∂p̂S = (2tS − 3bS)/2tSm. Therefore, when cross-group network effects of
sellers are larger than transportation costs of sellers, platform profits decrease
with the restriction of prices.

3 Free entry

Each potential platform decides whether to enter in the first stage. If a
platform enters the market, it obtains at least zero profit. In this section,
we primarily consider the case in which the price for sellers is restricted, but
we discuss the case without the restriction at the end of this section. Let m̂
denote the number of platforms under free entry. 16

The socially optimal number of platforms is defined by the number of
platforms to maximize social welfare, which is:

W = aS − cS + bS + bB
m

− 2m
ÃZ 1/2m

0

tSxSdxS +

Z 1/2m

0

tBxBdxB

!
+aB − cB −mf.

Note that entry dilutes contributions of the cross-group network effects to the
social welfare. Maximizing the social welfare with respect to m, ∂W/∂m =
(tS + tB − 4bS − 4bB)/4m2 − f . When tS + tB − 4bS − 4bB > 0, the socially
optimal number of platforms m∗ is: m∗ = [(tS + tB − 4bS − 4bB)/4f ]1/2. The
socially optimal number of platforms increases with transportation costs and

15When sellers are bound by a maximum price, platform profits from sellers decrease,
whereas platforms attract additional sellers. Platforms can levy additional fees on buyers
by adapting to the growth of sellers. Cross-group network effects of sellers intensify profits
from buyers. Under these conditions, an increase in platform profits from buyers is larger
than a decrease in platform profits from sellers. Therefore, profits with the restriction are
larger than that without the restriction.
16Note that m̂ has real roots because 4tStB−9bSbB > 0. We neglect to discuss the case

in which the number of entrants becomes an integer.
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decreases with cross-group network effects and fixed costs.17

Consider how many platforms can enter the market when the price is
not restricted. Using (5), the number of platforms under free entry is m =
[(2tS+2tB−3bS−3bB)/2f ]1/2 > m∗. Therefore, free entry yields excess entry,
because an entering platform harms the profit of other platforms. This result
is an extension of Salop (1979) and Navon et al. (1995).
We now consider the influence of cross-group network effects on excess en-

try. From the above formula, it is straightforward that the numbers of firms
in the social optimum and under free entry, m∗ and m, both decrease in the
cross-group network effects, and thus those numbers themselves provide poor
information on the influence. For a better evaluation on the influence, we
propose the ratio18 m/m∗. Importantly, this ratio is independent of the entry
cost f , so that we can always adjust the entry cost to normalize m∗ without
affecting the ratio. Direct calculation shows the ratio is increasing in b’s;
the cross-group network effects intensify the degree of excess entry.19 This
is because, in addition to the well-known business stealing effect identified
in Salop, negative externalities of entry on the incumbents’ profits due to
diluting the cross-group network effects make entry further socially undesir-
able. Accordingly, the degree of excess entry in our model is severer than in
Salop.20

When the price is restricted, to compare the number of platforms under
free entry with the social optimum, denoted by ∆, the difference between the
profit of platforms with a price restriction and the marginal social benefit is:

∆ ≡ ∂W

∂m
− π̂ = −3tS + 3tB − 2bS − 2bB

4m2
− 2tS − 3bS

2tSm
(p̂S − pS). (8)

The first term of the right-hand side of (8) is comprised of the increase in
social welfare when a platform enters the market, as well as a portion of
profits unaffected by the restriction. Note 16tStB > 9(bS + bB)

2, 3tS + 3tB −
2bS − 2bB > 0. The second term of the right-hand side of (8) denotes the
difference between profits with the price restriction and without the price
restriction. Therefore, the following proposition is:

PROPOSITION 3 Under free entry, if the minimum or maximum price
binds, when ∆ > 0, the number of platforms is smaller than the social op-

17If tS + tB − 4bS − 4bB < 0, note that the socially optimal number of platforms is one.
However, we focus on the case where tS + tB − 4bS − 4bB > 0.
18The ratio is [2(2tS + 2tB − 3bS − 3bB)/(tS + tB − 4bS − 4bB)]1/2 > 2.
19Differentiating the ratio with respect to the cross-group network effects, 5(tS +

tB)/(tS + tB − 4bS − 4bB)[2(2tS + 2tB − 3bS − 3bB)(tS + tB − 4bS − 4bB)]1/2 > 0.
20We can integrate Salop’s model into ours by setting t = tS + tB and bS = bB = 0. The

ratio in Salop is 2.
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timum. When ∆ < 0, the number of platforms is larger than the social
optimum.

proof: When the marginal social benefit is positive at the number of platforms
under free entry ∂W/∂m−f > 0, additional entry is needed to improve social
welfare. But an extra platform does not enter because π̂−f < 0 under∆ > 0.
Excess entry result can be proven accordingly.■

When the price is not bound by the restriction (for example a minimum
price), we have excess entry result. However, we show that too few platforms
enter the market under conditions of the minimum price. When the price
for sellers is bound by the minimum price, the profit from sellers increase
and the profit from buyers decrease. When the profit increase from sellers
is smaller than the profit decrease from buyers, the number of platforms
with the restriction decreases compared with the number of platforms with
restriction. If the cross-group network effects of sellers are sufficiently large,
platforms earn considerably low profits because platforms actively compete
for buyers. An entering platform cannot sufficiently steal business from other
platforms. Therefore, the number of entering platforms is smaller than the
social optimum.21

If we set the minimum or maximum price on Salop (1979), there is the
case where too few firms enter the market. However, the restriction is limited
to a price cap. The minimum price increases the number of entrants and
enforces excess entry, because the minimum price relaxes price competition.
Meanwhile, when the price for sellers is bound by the minimum price, we show
that too few platforms enter the market compared with the social optimum.
Fierce price competition for buyers brings the profit down, if the cross-group
network effects of sellers are sufficiently large.

4 Conclusion

We investigate a model of multiple platforms competition in a circular city.
If a minimum (maximum) price binds and the cross-group network effects
are sufficiently large for a group of agents, the profits of a platform with a
price restriction is lower (higher) than that without a price restriction. As
a result, the number of platforms is smaller (respectively, larger) than the
social optimum.

21If the price for sellers are bound by the maximum price, profits from sellers decrease,
whereas profits from buyers increase. If the cross-group network effects of sellers are
sufficiently small, the profit increase from buyers is very few because competition for
buyers without the restriction is inactive. Therefore, the number of platforms is smaller
than the social optimum.
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In our model, platforms charge subscription fees to agents. However,
platforms may use more complicated pricing rules. Shopping malls (buyers
and shops) demonstrate an example. Buyers usually do not pay a price to
go into a shopping mall. On the other hand, sellers pay the shopping mall
to set up shops. Shopping malls aggressively compete on prices charged to
sellers when buyers value the number of sellers. However, shopping malls
may charge a price per transaction. Extending our model to include per-
transaction prices would be an interesting topic for future research.
We take a preliminary step in analyzing multiple platform competition

when agents join only one platform. In reality, agents join multiple platforms
in order to interact with more customers. For example, firms may post
multiple magazines in order to attract more potential employees, and workers
may subscribe to multiple magazines in order to find a better job. Armstrong
(2006) and Armstrong and Wright (2007) consider the multi-home problem
in their two-platform competition model. However, there are some difficulties
in extending our model to the multi-home problem. The multi-home problem
should thus be undertaken in future research.
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