Volume 30, Issue 3

Do institutions rule? The role of heterogeneity in the institutions vs. geography debate

Andros Kourtellos
University of Cyprus

Thanasis Stengos
University of Guelph

Chih ming Tan
Tufts University and Clark University

Abstract

We uncover evidence of substantial heterogeneity in the growth experience of countries using a structural threshold regression methodology. Our findings suggest that studies that seek to promote mono-causal explanations in the institutions versus geography debate in growth are potentially misleading.
Do Institutions Rule? The Role of Heterogeneity in the Institutions vs. Geography Debate*

Andros Kourtellos
Department of Economics
University of Cyprus†

Thanasis Stengos
Department of Economics
University of Guelph‡

Chih Ming Tan
Department of Economics
Clark University§

July 2, 2010

Abstract

We uncover evidence of substantial heterogeneity in the growth experience of countries using a structural threshold regression methodology. Our findings suggest that studies that seek to promote mono-causal explanations in the institutions versus geography debate in growth are potentially misleading.

Keywords: Threshold Regression, Endogenous Threshold Variables, Growth, Institutions, Geography.

JEL Classifications: C21, C51, O47, O43.

*We thank Steven Durlauf and Yannis Ioannides for their insightful comments and suggestions. We are also very grateful to Francesco Trebbi for sharing the Rodrik et. al. dataset with us. Finally, we would like to thank an anonymous referee for insightful comments and suggestions.

†P.O. Box 537, CY 1678 Nicosia, Cyprus, e-mail: andros@ucy.ac.cy.
‡Guelph, Ontario N1G 2W1, Canada, email: tstengos@uoguelph.ca
§950 Main Street Worcester, MA 01610, email: chihmingtan@gmail.com
1 Introduction

In this paper, we consider one of the important ongoing debates in the growth empirics literature: the “institutions vs. geography” debate. The key question in this debate is whether geography has direct effects on long-run economic performance or if its influence is limited only to its effects on other growth determinants, such as institutions. Attempts to resolve this debate have centered on the use of linear cross-country regressions where the dependent variable is GDP per capita in 1995 while proxies for institutional quality, macroeconomic policies, and geographic endowments form the set of regressors. Acemoglu et. al. (2001), Easterly and Levine (2003), and Rodrik et. al. (2004) conclude that geography’s influence on long-run income levels is solely indirect through its effects on institutions, while Sachs (2003) argues that their conclusions are overturned once a measure of malaria transmission is included.

However, linear cross-country regression exercises potentially ignore possible misspecification of the long-run development process. There is both substantial theoretical and empirical support for heterogeneity in the cross-country development process (see Durlauf, Kourtellos, and Tan (2008)). It is unclear whether previous findings based on the assumption of linearity will be robust once we account for specification issues such as nonlinearity and parameter heterogeneity suggested by the broader growth literature.

In this paper, we model nonlinearity and heterogeneity using sample splitting and threshold regression methods (Hansen (2000), Caner and Hansen (2004)). These methods internally sort the data, on the basis of some threshold variable, into groups of observations each of which obeys the same model. The threshold regression model is a particularly appropriate alternative to the linear model in empirical growth research as it nests the latter, but allows the growth researcher to investigate the possibility of threshold nonlinearities in the growth process and also to uncover the interactions between various growth determinants and their effects on long-run development.

This work is not the first to employ sample splitting and threshold regression methods to a problem in empirical growth. However, previous work using threshold models to account for parameter heterogeneity in growth (e.g., Papageorgiou (2002), Tan (2009)) have assumed that the threshold variable is exogenous. This assumption may be plausible if geography variables were responsible for the threshold effect, but certainly not if institutional quality was the threshold variable since the literature has argued strongly that institutions are endogenous.

Here, we revisit the institutions versus geography debate within the framework of Kourtellos, Stengos, and Tan (2009); henceforth KST, where we consider a threshold regression model with an endogenous threshold variable. When we apply KST to growth data, we find results that offer a markedly more nuanced view from those in the existing institutions versus geography debate where
the presence of possible heterogeneity is ignored. Our results also differ substantially from those obtained using methods that ignore the possible endogeneity of the threshold variable. Our results certainly confirm that the quality of institutions is an important growth determinant. But, what they really highlight is the role of institutional quality in classifying countries into two long-run development regimes. If the quality of institutions is sufficiently high, then both institutions and geography proponents would agree that higher levels of institutional quality have a positive and significant impact on long-run per capita income. Geography proponents could also legitimately argue that disease prevalence has a significant negative impact on long-run performance. However, for low-quality institutions countries, institutions and geography proponents are likely to hold to their positions and bitterly disagree over the true deep determinant of under-development. Our findings therefore affirm Sachs’ conjecture; the development process certainly appears to be an outcome of complex interactions between fundamental causes.

The paper is organized as follows. Section 2 describes the model and the setup. Finally, section 3 provides the results from our empirical application.

2 The Structural Threshold Regression (STR) model

Consider the following structural threshold regression (STR) model of log income per capita

\[y_i = \mathbf{x}'_i \beta_1 + u_i, \quad q_i \leq \gamma \] (2.1)
\[y_i = \mathbf{x}'_i \beta_2 + u_i, \quad q_i > \gamma \] (2.2)

where \(y_i \) is the log income per capita in country \(i \), \(q_i \) is an endogenous threshold variable (such as the quality of institutions) with \(\gamma \) being the sample split value, \(\mathbf{x}_i \) is a vector of growth determinants, \(\beta_1 \) and \(\beta_2 \) are regime-specific slope coefficients, and \(u_i \) is an error. We assume that \(E(u_i|\mathbf{z}_i) = 0 \) where \(\mathbf{z}_i \) is a \(l \times 1 \) vector of instruments with \(l \geq p \) where \(p \) is the number of endogenous variables. We assume a random sample \(\{y_i, \mathbf{x}_i, q_i, z_i, u_i\}_{i=1}^{n} \). A reduced form equation for \(q_i \) is given by

\[q_i = \mathbf{z}'_i \pi_q + v_{q,i} \] (2.3)

where \(E(v_{q,i}|\mathbf{z}_i) = 0 \).

STR is similar in nature to the case of the error interdependence that exists in limited dependent variable models between the equation of interest and the sample selection equation; see Heckman (1979). For example, in the endogenous dummy model, the variable \(q_i \) that determines the assignment of observations to regimes is latent, but the assignment is known (given by the dummy variable). However, in the STR case, we observe \(q_i \), but the sample split value \(\gamma \) is unknown, and
we estimate it.

Hence, as in the limited dependent case, under joint normality of \((u_i, v_{q,i})\), we have the following conditional expectations

\[
E(y_i|x_i, z_i, q_i \leq \gamma) = \beta'_1 x_i + \kappa \lambda_1 (\gamma - z'_i \pi_q) \tag{2.4}
\]

\[
E(y_i|x_i, z_i, q_i > \gamma) = \beta'_2 x_i + \kappa \lambda_2 (\gamma - z'_i \pi_q) \tag{2.5}
\]

where \(\kappa\) is the covariance between \(u_i\) and \(v_{q,i}\), \(\lambda_1(\gamma - z'_i \pi_q) = \frac{\phi(\gamma - z'_i \pi_q)}{\Phi(\gamma - z'_i \pi_q)}\) and \(\lambda_2(\gamma - z'_i \pi_q) = \frac{\phi(\gamma - z'_i \pi_q)}{1 - \Phi(\gamma - z'_i \pi_q)}\) are the inverse Mills ratio bias correction terms, and \(\phi(\cdot)\) and \(\Phi(\cdot)\) are the Normal pdf and cdf, respectively.

Let \(I(\cdot)\) be an indicator function that defines two regimes depending on the value of the threshold variable \(q_i\), where \(I(q_i \leq \gamma) = 1\). Further define \(\lambda_1(\gamma) = \lambda_1(\gamma - z'_i \pi_q) I(q_i \leq \gamma) + \lambda_2 (\gamma - z'_i \pi_q) (1 - I(q_i \leq \gamma))\) and \(\delta = \beta_1 - \beta_2\). Then we can rewrite the STR model as a single equation

\[
y_i = x'_i \beta + x'_{i,\gamma} \delta + \kappa \lambda_i(\gamma) + \varepsilon_i \tag{2.6}
\]

where \(\varepsilon_i\) is a regression error.

Notice that when the threshold variable \(q_i\) is exogenous, i.e. \(\kappa = 0\), (2.6) becomes the threshold regression model of Hansen (2000). Additionally, when \(x_i\) is also endogenous then we get the threshold regression model of Caner and Hansen (2004). In both cases, the inverse Mills ratio bias correction terms are omitted so that naively estimating the STR model using Hansen (2000) or Caner and Hansen (2004) would generally result in inconsistent estimation. In a series of Monte Carlo exercises, KST confirm that this is indeed the case.

We estimate the parameters of (2.6) in three steps. First, we estimate the reduced form parameter \(\pi_q\) in (2.3) by LS and obtain \(\hat{\lambda}_i(\gamma) = \hat{\lambda}_{1,i}(\gamma) + \hat{\lambda}_{2,i}(\gamma), with \hat{\lambda}_{1,i}(\gamma) = \lambda_1 (\gamma - z'_i \hat{\pi}_q)\) and \(\hat{\lambda}_{2,i}(\gamma) = \lambda_2 (\gamma - z'_i \hat{\pi}_q)\). Second, we estimate the threshold parameter \(\gamma\) by minimizing a Concentrated Least Squares (CLS) criterion

\[
\hat{\gamma} = \arg \min_{\gamma} \sum_{i=1}^{n} (y_i - x'_i \beta - x'_{i,\gamma} \delta - \kappa \hat{\lambda}_i(\gamma))^2 \tag{2.7}
\]

Finally, once we obtain the split samples implied by \(\hat{\gamma}\), we estimate the slope parameters using GMM. Using a similar set of assumptions as in Hansen (2000) and Caner and Hansen (2004), KST show that the STR estimator is consistent.
3 The Institutions versus Geography Debate

In this section, we revisit the institutions versus geography debate. Our work follows most closely Rodrik et. al. The data we use also comes primarily from that paper. The dependent variable is the log of GDP per capita in 1995. As in Rodrik et. al., the set of regressors consists of a measure of institutional quality, the rule of law index (RULE); a measure of trade openness, the logarithm of the ratio of nominal imports plus exports relative to GDP in purchasing power parity-adjusted US dollars (LNOPEN); and two alternative geography measures, distance from the equator of the capital city (DISTEQ) and the malaria index in 1994 (MALFAL94). We consider the sample of countries that corresponds to Rodrik et. al.’s large cross-country set since their findings were shown to be robust to sample variations. Here, RULE is instrumented using the proportion of the population that speaks either English (ENGFRAC) or a major European language (EURFRAC), as suggested by Hall and Jones (1999). We instrument the trade openness variable with Frankel and Romer’s (1999) logarithm of predicted trade shares variable (LOGFRANKROM). Following Sachs, we also instrument MALFAL94 using an index of malaria ecology (ME).

Table 1 presents our main findings. We contrast results where the model is assumed to be linear (columns (1)-(2)) against those where the model is a threshold regression model (columns (3)-(10)) that sorts the countries into two regimes. We found evidence for RULE as an endogenous threshold variable. We emphasize that the choice for RULE as a threshold variable was not determined on an a priori basis. Instead, the STR estimation searches across the entire set of candidate threshold variables (all of the covariates detailed above), and tests for evidence for a sample split. In the case of our application, the candidate threshold variable with the lowest p-value turned out to be RULE, and only one split was found via sequential testing. Each threshold model presents the sample split value and the corresponding 90% confidence interval. We also present the GMM slope estimates for each regime. We also compared results using a linear model with joint (interaction) effects with those from our STR model. We found that the results we obtained using a linear model with an interaction term for quality of institutions and disease, and one for quality of institutions and trade openness, yielded qualitatively similar results to what we obtained using STR. However, these linear models are typically overparameterized and, therefore, yield less efficient results than our results that are based on parsimonious threshold regression specifications.\footnote{A systematic investigation of joint effects is difficult as it raises the question of model uncertainty. To properly investigate joint effects, we would need to consider a large number of models that admit various combinations of all possible interaction terms. The advantage of our STR framework is precisely that, through a sequential testing approach, we uncover the set of salient interactions between growth regressors. In this sense, STR selects a model as a solution to the problem of model uncertainty.}

The linear GMM results replicate those in the literature. When DISTEQ is the geography variable, we find, as Rodrik et. al. do, that RULE is the only variable to have a significant impact on long-run...
performance (column 1). However, when we replace DISTEQ with MALFAL94, as recommended by Sachs, we find, as he does, that both RULE and MALFAL94 have significant effects on long-run performance. As expected, in both these cases, higher institutional quality was found to be good for long-run performance, while, in the latter case, more severe disease prevalence was shown to have a negative impact (column 2).

When we account for heterogeneity, however, we find that STR delivers more nuanced results compared to the established findings based on the linear model. Compared to Rodrik et. al.’s findings, the STR GMM results (columns (5) and (6)) suggest that there exists substantial heterogeneity in the effect of institutional quality on long-run performance for countries above and below a threshold level. For countries with RULE below -0.736, which corresponds to Pakistan, the marginal impact of improving institutional quality is about 5.5 times larger than that for countries above the threshold value. A one standard deviation improvement of institutional quality would raise long-run performance by 3.3 standard deviations for the low-quality institutions set of countries compared to only less than 0.6 for the higher-quality institutions group. Hence, for this exercise, while the STR GMM results do affirm that “institutions rule” overall, we find that institutions are particularly important for the worst-off countries.

Similarly, our STR GMM results (columns (9) and (10)) for the case where MALFAL94 replaces DISTEQ do support Sachs’ finding that “malaria transmission, which is strongly affected by ecological conditions, directly affects the level of per capita income after controlling for the quality of institutions [Sachs (2003), Abstract]”. We find that MALFAL94 has a significant negative impact on long-run performance for both low- and high-institutions countries. However, institutional quality (RULE) only has a significant positive impact on long-run performance after countries exceed a threshold level (RULE > -0.195; which corresponds to China). This finding actually strengthens Sach’s position since it suggests that the only thing that could deliver marginal improvements for the worst-off countries is the alleviation of the negative effects of a disadvantageous disease ecology. For this group of countries, small changes to institutional quality are unlikely to do much good (unless it gets the country above the threshold point).

Our STR results also contrast with those obtained using Caner and Hansen’s (IVTR; 2004) approach that allows for slope covariates to be endogenous, but maintains the assumption of an exogenous threshold variable. We showed in the discussion in the previous section, and also using Monte Carlo experiments that are reported in KST, that the omission of the inverse Mills ratio bias correction terms results in the estimators for the slope parameters for IVTR to be inconsistent. However, IVTR has seen recent popularity in its application to growth empirics (e.g., Papageorgiou (2002)), so we also compare our STR findings to those of IVTR. In comparison to STR, for the Rodrik et. al. specification, the IVTR results (columns (3) and (4)) provide weaker support for Rodrik et. al.’s findings. The IVTR results suggest that institutional quality only matters
strongly (at the 1% significance level) after a country has attained a minimum level (RULE > 0.231; which corresponds to India). Below that level, variations in none of the growth determinants has any influence on long-run performance at the 5% level. Similarly, the IVTR findings for the Sachs specification (columns (7) and (8)) also dilute the importance of MALFAL94. In contrast to the STR findings, the IVTR results suggest that the negative impact of disease prevalence only applies to the worst-off countries. For high-quality institutions countries, only continued improvements in institutions would deliver significant (positive) marginal payoffs in terms of better long-run performance. The sharp differences between the STR and IVTR findings suggest that not accounting for the endogeneity of the threshold variable in threshold regression exercises could deliver conclusions that are highly misleading in practice.

In sum, we conclude that our findings differ substantially from those obtained from methods that either ignore the presence of thresholds altogether or ignore the possible endogeneity of the threshold variable. There is much evidence to suggest that there exists substantial heterogeneity in the growth experiences of countries, and that studies that seek to promote mono-causal explanations for the variation in long-run economic performance across countries are potentially misleading. In this sense, our conclusions differ from those of the existing literature not just because of the new methodology that we employ, but also by explicitly allowing for different countries to follow different growth processes.

References

Table 1: Regressions of log per capita GDP

<table>
<thead>
<tr>
<th>Threshold Sample Split 90 % CI</th>
<th>Linear-GMM</th>
<th>IVTR-GMM</th>
<th>STR-GMM</th>
<th>IVTR-GMM</th>
<th>STR-GMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>q=Rule 0.231 [0.158, 0.231]</td>
<td>(1) 1.334* (0.287)</td>
<td>5.319** (3.087)</td>
<td>3.336* (1.405)</td>
<td>0.407 (0.878)</td>
<td>1.208 (0.802)</td>
</tr>
<tr>
<td>q> 0.231</td>
<td>(2) 0.700* (0.148)</td>
<td>0.924* (0.284)</td>
<td>0.589* (0.254)</td>
<td>0.938* (0.379)</td>
<td>1.102* (0.405)</td>
</tr>
<tr>
<td>q=Rule -0.736 [-0.867, -0.736]</td>
<td>(3) -0.286 (0.255)</td>
<td>-0.995 (1.090)</td>
<td>0.487 (0.667)</td>
<td>0.058 (0.212)</td>
<td>0.371 (0.467)</td>
</tr>
<tr>
<td>q> -0.736</td>
<td>(4) -0.034 (0.178)</td>
<td>0.038 (0.110)</td>
<td>0.074 (0.153)</td>
<td>-0.015 (0.169)</td>
<td>0.050 (0.136)</td>
</tr>
<tr>
<td>q=Rule 0.231 [0.158, 0.551]</td>
<td>(5) 0.001 (0.009)</td>
<td>-0.031 (0.037)</td>
<td>-0.012 (0.024)</td>
<td>- (0.005)</td>
<td>- (0.005)</td>
</tr>
<tr>
<td>q> 0.231</td>
<td>(6) 0.002 (0.006)</td>
<td>0.002 (0.005)</td>
<td>0.003 (0.005)</td>
<td>- (0.005)</td>
<td>- (0.005)</td>
</tr>
<tr>
<td>q=Rule -0.195 [-0.442, -0.195]</td>
<td>(7) - (0.213)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
</tr>
<tr>
<td>q> -0.195</td>
<td>(8) - (0.213)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
</tr>
<tr>
<td>q=Rule -0.195 [-0.442, -0.195]</td>
<td>(9) - (0.213)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
</tr>
<tr>
<td>q> -0.195</td>
<td>(10) - (0.213)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
<td>- (0.215)</td>
</tr>
</tbody>
</table>

All the regressions include an unreported constant. Standard errors are in parentheses. "**" denotes significance at 1%, "***" at 5%. The quality of institutions variable, RULE, is the Rule of Law Index for 2001. The dependent variable is the natural logarithm of per capita GDP in PPP US dollars in 1995. LNOPEN is the natural logarithm of real openness defined by the ratio of nominal imports plus exports to GDP in PPP US dollars. DISTEQ is the distance from Equator of capital city measured as abs(Latitude)/90. MALARIA94 is the Malaria index in 1994. ENGFRAC is the fraction of the population speaking English. EURFRAC is the fraction of the population speaking one of the major languages of Western Europe. LOGFRANKROM is the natural logarithm of predicted trade shares computed from a bilateral trade equation with “pure geography” variables. ME is a population weighted Malaria Ecology index that includes temperature, species abundance, and vector type (the type of mosquito). We refer the reader to Rodrik et al. (2004) for detailed data references.