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Abstract

In this note, a class of nonlinear dynamic models under rational expectations is studied. A particular solution is found
using a model reference adaptive technique via an extended Kalman filtering algorithm, for which initial conditions

knowledge only is required.
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1. Introduction

Since the early work of Muth (1961) and Lucas (1972), the concept of rational expectations
(RE) has become the standard tool of modeling expectations in dynamic macroeconomics.
It essentially reduces to the assumption that agents collect and make optimal use of all
available (pertinent) information as to the economic environment when formulating their
forecasts of economic variables of interest (e.g., prices, interest rates, government policies).
Since rational expectations need to be model-consistent and are endogenously determined,
equilibria of economic systems described by dynamic forward-looking equations are typically
non-unique (e.g., Sargent and Wallace, 1973; Taylor, 1977; Blanchard and Kahn, 1980; Broze
and Szafarz, 1991; Sims, 2002).

In order to address this issue, Carravetta and Sorge (2010) fully characterize the class of
linear time-varying RE models - namely, those displaying no backward-looking dimension -
for which a solution can be obtained via a causal model forced by a well-identified control
function, estimated via a Kalman filter technique. More specifically, the optimal minimum
variance estimate of the future state is recursively computed by applying the Kalman filter,
fed by the noisy measurements of the state vector, on the autoregressive equation describing
the perfect-foresight dynamics of the economy. An exact solution of the actual RE problem
is thus determined by using such estimator as control function in a causal (controllable) state
system, for which initial conditions knowledge only is required.

The use of dynamic stochastic nonlinear models has increasingly widened in the economic
literature over the last years. Since closed-form solutions for such models are rarely available,
solution methods typically resort to either simple graphical analysis or elaborate numerical
procedures. The introduction of the RE hypothesis for forward-looking models, under which
subjective beliefs of decision makers are replaced with the mathematical conditional expec-
tation of some future model’s equilibrium state, has made this issue even more difficult to
deal with (e.g., Fair and Taylor, 1983; Christiano, 1990; den Haan and Marcet, 1990; Taylor
and Uhlig, 1990). This note extends the method developed in Carravetta and Sorge (2010)
to solution of a particular class of dynamic forward-looking models in state-space form which
are nonlinear in the RE term, using an extended Kalman filtering approach (Anderson and
Moore, 1986; Haykin, 1996). To this end, it is organized as follows. In Section 2 the problem
we deal with is formally stated, whereas Section 3 presents the estimation algorithm. Section
4 concludes.

2. The model

A general RE model may be characterized by the system of f equations:
F(l‘—a Z, E(Q(J;+)|Q)7 U) =0
FRXR"XRIX R >R, 0: R — R4

where x € R" is a vector of (endogenous) state variables, defined on an appropriate filtered
probability space, the initial state  being zero-mean Gaussian with covariance matrix F.
The vector v € R™ collects zero-mean white Gaussian structural (exogenous) shocks with
covariance V. Dependence of the system on first lags of the states is summarized in z_,
whereas E(:|-) denotes conditional (rational) expectations of (some function 6 of) future
states x,, based on the information set ) available to economic agents at the time the
forecast is generated.



For given (time-invariant) model structure, the functions F' and 6 are known. The form
of nonlinearities considered in this note accounts for a first-difference temporary equilibrium
map in which rational expectations - based on past information - are a nontrivial function
of the current states and the fundamental (exogenous) shocks:

E(r|Yi1) = (Lo h)(z,ve), Vit

loh: R"xR* - R"

where it is assumed for simplicity n = m. For the purpose of the paper, we also make the
following;:

Assumption 1. Let h be linear and | € C' on the open domain =, with |D(1(£))| # 0 for
all € € =.

The requirement that the fundamental shocks be linearly separable from the nonlinear
structure of the economy is related to the nature of our solution procedure, which builds
upon an adaptive technique - well-known in the literature on stochastic control theory (e.g.,
Landau, 1979; Kendrick, 1981) - whose reference model is chosen as the autoregressive
equation governing the perfect-foresight dynamics of the system economy. The second part
of Assumption 1 further restricts the form of nonlinearities admitted by our estimation
algorithm to invertible [ functions, due to a few technical difficulties, which will be assessed
in the next Section.

Accordingly, we will study the vector nonlinear forward-looking difference system under
RE of the form!:

Tip1 = f(E(r42]Y))) + 01, T0=7 (1)

where f := [7'. The filtration Y; is generated by the output process {y;,j < t} according
to:
v =Cry+wy, Yyo=17 (2)

with y € R" and w random vector drawn from N(0, W), which accounts for the output
measurement noise, and C' a real square matrix. The error sequences {v;, w;} are assumed
to be mutually independent as well as independent of the initial state 2.

The RE model (1)-(2) typically admits non-unique solutions for given initial conditions.
In the linear case, Carravetta and Sorge (2010) address the multiplicity issue by replacing
the unobservable expectational component with a computable one of the required structure,
namely the optimal prediction of the perfect-foresight future state whose dynamics are given
by (for non-singular state transition matrix B)3:

Ty = B, + v, xp=z9=7,27, =0 (3)
to which the following output equation is attached:
y, = Cay +w (4)

More specifically, the following is shown (for the time-varying case):

1With no loss of generality, we set h = [I  — I], with I denoting the n x n identity matrix.

2The parameters of the nonlinear dynamic system, namely f, V, W, and P,, are taken to be known.
Whereas the outputs are observed, the state and error variables are hidden.

3This assumption is made for the descriptor system (3) to admit an autoregressive representation.



Lemma 1 (Carravetta and Sorge, 2010). The linear stochastic forward-looking RE model
with noisy observations and time-varying parameters:

i1 = BiE(140|Yy) + 0441, 20 =17

vy =Cixy +w, Yo=19

always admits a solution equal to the one of the causal dynamic stochastic model:
T = Buug + vpp1, 2o =17

vy =Cxy+w, Yo=Y

where the control sequence uy is set to the optimal minimum variance (prediction) estimate
of the perfect-foresight state &7, fed by the actual measurements {yj,7 <t} asin (2)*.

Consider now the causal (memoryless) dynamic stochastic nonlinear model with noisy
observations:

Tepr = flu) + o1, 2o =7 (5)
y=Cry+w, yo=19y (6)

and let v = f(u) = {f(us)} be an admissible - that is, Y;-adapted - control sequence. From
equation (5), the state motion = (x,) generated by the input sequence v’ = E(x},,|Y;)
is such that, for any ¢, the optimal prediction of any future perfect-foresight state, given
the measurement (yq...%;), is equal to that relative to the actual state. From Assumption
1 and Lemma 1, it readily follows that there exists a RE equilibrium z = (z;) - that is, a
time-dated sequence of (functions of) states and observables in Y; fulfilling the non-causal
system (1)-(2) - which is computable via a causal model of the form (5)-(6) forced by the
optimal prediction estimate of the two-step ahead perfect-foresight state variables:

T = f(B(2),,]Y7)) + v

Consequently, the main issue lies in developing a suitable (locally optimal) state estima-
tion algorithm for the nonlinear dynamic equation:

T = (@) + v (7)

3. The estimation algorithm

Equation (7) represents a non-causal first-difference descriptor model, whose estimation can-
not be in general performed by means of simple recursive algorithms. However, owing to the
invertibility of f, we may rewrite it as:

x;“+2 = @(xIH, Ut+1) (8)

“This was conjectured in De Santis et al. (1993). Nonetheless, as demonstrated in Carravetta and
Sorge (2010), such conjecture fails to obtain as a general property of dynamic RE models. Moreover, the

equilibrium state motion is shown to be the closest, in mean square, to the evolution of the perfect-foresight
model (3).



where ® = (loh)(x*,v). This enables us to address the nonlinear filtering problem by means
of an extended Kalman filter, fed by the measurements y;°. The state equation (8) is thus
linearized at &7, to yield®:

Tiyp = (T4, 0) + Do (P) (@41, 0)[740 — Tia] + Do @) (T4, 0)vi (9)

By defining the vector 2z := [z} 71,]7, the linearized state process (9) together with the
linear measurement function (4) can be written in vectorial form as:

Ziy1 = Azg +up + Bugyr, 20 = [0 1(z)T]F (10)

yr = Cz + wy (11)

where:

i) () e 0
I =Dy (®)(2744,0) Ty 7 0

where wu; is regarded to as a Y% ;-measurable stochastic input to the augmented state system
(10)-(11), which can be dealt with as a deterministic one in order to apply the Kalman filter
formula’. The optimal filtering estimate is thus obtained as:

Zip1 = Zepp + K (yt+1 — éét—i—l\t) (12)
Py = PtZJrut_KEKT (13)

where the innovation covariance and the Kalman gain are given respectively as:
S =CP; CT+ W (14)
K= Atz+1|tc_’TZ_1 (15)
The filtering and one-step prediction error covariances are P = E ((ze — 20) (2 — 2)7)
and Pﬁt_l = E ((2t — Z0-1) (2t — 2y4e—1)") respectively, with ]5;1” — AP?AT + V. The

initial conditions for the augmented state z; are readily used to initialize the prediction error
covariance sz|71-

Taking expectations conditional on Y;* for equation (10) yields the one-step prediction
estimate:

2t+1‘t = AZ +wu
and thus the optimal two-step prediction estimate for the perfect-foresight state &} ot is
obtained as:
i‘:+2|t = [0 I]Tétntllt (16)

which can therefore be used to recursively solve the RE model (1)-(2), given initial conditions
knowledge only.

SSince the state equation (8) is to be linearized around a (supposedly) unbiased filtering estimate of the
perfect-foresight state only, the corresponding output should be used accordingly.

6D;(®)(7) denotes the Jacobian of ® with respect to i = z*,v evaluated at some i.

"See Carravetta et al. (2002) and Lipster and Shiryaev (2004) on this issue. Note that the matrix pair
(A, B) is controllable whereas the matrix pair (A4, C) is observable.
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4. Concluding remarks

Solving stochastic RE models means finding an expression for the unobservable expectational
term as a (possibly nonuniquely determined) function of the conditioning information set.
Carravetta and Sorge (2010) develop a recursive algorithm, based upon classical Kalman
filtering and stochastic control theory, for the solution of linear time-varying RE models with
past expectations and no predetermined variables. In this note, we extend their approach
to a class of nonlinear dynamic stochastic models by means of an extended Kalman filtering
technique.
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