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Abstract 

Regional convergence has become a heated topic in recent decades. Most papers studying this question define regions 
according to normative criteria, even though this can lead to biased conclusions. In contrast, this article explores the 
per capita income (PCI) distribution of metropolitan regions defined by a functional criterion, the agglomerated 
population. Specifically, we examine the external shape and internal movements of the PCI distribution in a sample of 
235 European metropolitan regions over the period 1995 to 2006. The results describe a process of income 
convergence among these regions.
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1. Introduction 
 
The study of regional disparities has become a heated topic in recent decades, especially 
within the European Union where interest has been fuelled by concerns over the ongoing 
process of economic integration. Therefore, a great many articles exist on this topic, most of 
them using, for reasons of data availability, normative/administrative criteria to define 
regions. However, as indicated by Magrini (1999), the use of this type of regions poses a 
number of problems that can affect the validity of the results. For this reason, in the present 
analysis we employ an alternative criterion, specifically a functional one to define European 
metropolitan regions.  
 
Another important aspect of this paper is its methodology. As shown by Magrini (2009), 
among others, the classical approach to convergence (beta and sigma convergence) “fails to 
uncover important features of the dynamics that might characterise the convergence process.” 
Instead we approach the question of regional convergence by examining the dynamics of the 
distribution itself. First, we estimate univariate density functions to detect changes in the 
external form of the distribution. Second, we estimate conditional density functions to 
characterise the internal movements of the population. We do not use the traditional 
conditional density estimator (e.g. Villaverde, 2006), but a relatively new method with at 
least two advantages: better statistical properties and more powerful visualisation tools (see 
Hyndman et al., 1996). 
 
 

2. Data 
 
As mentioned in the Introduction, the definition of a region should not rely on administrative 
criteria alone. In fact, there are quite a few different notions of a region among which the 
functional one -which arises from socio-economic criteria such as size (population or 
employment), density, and/or the commuting time from peripheral to core areas- stands out. 
 
Accordingly, this study is based on the relative per capita incomes of 235 European 
Metropolitan regions in the EU-27, expressed in Purchasing Power Standards.1 The data are 
derived from EUROSTAT sources (see Dijkstra, 2009), and cover the period between 1995 
and 2006.2 As there is no clear consensus on the definition of a Metropolitan region, we have 
opted for considering them as the NUTS3 regions (and where necessary, groups of NUTS3 
regions) representing urban agglomerations with more than 250,000 inhabitants. The 
agglomerations are identified using the Urban Audit’s Larger Urban Zones, so by definition 
include the commuter belt around each city.3 Therefore, these metropolitan regions are not 
strictly political-administrative bodies. 
 

                                                 
1 The entire list of European Metropolitan regions is given in the Appendix. Although the EU has undergone 
several major changes in its composition, in this paper we consider the same Metropolitan regions for the whole 
period. Thus, and although our initial sample consisted of 258 Metropolitan regions, insufficient data (fewer 
than 7 consecutive data) led us to exclude 3 Danish, 3 Spanish, 1 Italian, 1 Dutch, 1 British and 14 Polish 
regions (23 in total). Note that 13 of the included regions have data series which do not begin in 1995. 
2 Although convergence is a long-run concept, we think a period of 12 years is long enough to refer to the 
reduction of disparities as convergence and to smooth potential effects of different types of shocks. 
3 A different perception of metropolitan regions can be found, for example, in Krätke, 2007. 
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3. Convergence? A distribution dynamics approach 
 
We begin by analysing the external shape of the per capita income distribution.4 Specifically, 
we estimate univariate density functions for the initial and final years of the sample using a 
Gaussian kernel with varying bandwidth. A variable bandwidth is appropriate when data are 
sparse, as is the case in our sample. By varying the bandwidth along the support axis, we can 
reduce the impact of areas with few observations (potential outliers) on the estimated 
variance, as well as mitigating the bias due to areas with many observations. Specifically, we 
employ the adaptive, two-stage kernel density estimator proposed by Abramson (1982): 
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where K is a Gaussian kernel and )(ˆ i
i xg

g  are the bandwidth adjustment factors. These 

factors are defined in terms of a pilot density estimate )(ˆ xg  calculated using the fixed 
bandwidth h ; g is the geometric average of )(ˆ xg  over all i. The value of h is chosen 
following Silverman’s rule of thumb (Silverman, 1986). The results, displayed in Figure 1, 
allow us to draw the following conclusions:  
 

1. The shape of the distribution changed over the sample period. The probability of a 
metropolitan region being located near the European average has markedly increased, 
a clear sign of convergence.  

2. The probability masses at relative PCI levels below 0.75 and above 1.4 decreased, 
another sign of convergence. 

3. The distribution presents only one mode in both 1995 and 2006. Its centre is stable 
and located slightly above the EU-27 average, meaning that metropolitan regions tend 
to be richer than non-metropolitan regions. 

 
In addition to observing changes in the external shape of the given distribution, it is useful to 
understand the internal changes. To address this issue, we employ an extension of the 
traditional kernel density estimation popularized by Quah (1996). To be precise, we estimate 
the so-called stacked conditional density (SCD) and highest conditional density region 
(HCDR) plots.5 As with the density function, to minimize the sensitivity of our estimations to 
outliers, we use a variable bandwidth calculated following the rules laid out by Bashtannyk 
and Hyndman (2001). Specifically, we set the bandwidth in the x direction at each point such 
that the smoothing window always contains 30% of the 1995 data.  
 
The SCD graph, which presents the conditional densities side-by-side in perspective, is 
mainly an illustrative tool (Figure 2). We will focus our comments on the HCDR plot (Figure 
3), which is based on the same conditional probabilities but provides more detailed 
information on the intra-distributional changes.  
 
The highest density region of a sample space is defined as “the smallest region... containing a 
given probability” (Hyndman et al., 1996). Note that this region need not be continuous. Each 

                                                 
4 Regional PCI values are normalised to the average per capita income (that is, we take the EU-27 mean to be 1) 
in order to facilitate comparisons and eliminate the effect of absolute changes over time. 
5 For a revision of this approach, see Maza et al. (2010). 
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vertical strip in Figure 3 represents the conditional probability density that a region with a 
given per capita income in 1995 (x-axis) will achieve a different PCI in 2006 (y-axis). The 
shaded regions of the band represent the highest density regions for probabilities of 25%, 
50%, 75% and 90% (in order from darkest to lightest). The bullet ( ) marks the mode of each 
conditional density distribution. The lengths of the shaded regions in Figure 3 confirm that 
the mobility within each income bracket is relatively high.  
 
The metropolitan regions with the lowest relative PCI in 1995 (i.e., Kaunas, Timisoara, 
Vilnius and Riga) have come closer to the European average. This is evidenced by their 
modes, which lie above the main diagonal on the left-hand side of the HDCR plot. Focussing 
on the greatest concentrations of probability (the bands containing total probabilities of 25% 
and 50%), we see that for relative PCI values below 0.5, the two darkest areas do not cross 
the diagonal. This is direct evidence for high mobility, which in turn contributes to the 
convergence process. The modes of metropolitan regions with above-average PCI are located 
below the diagonal, again indicating convergence. The highest density bands of metropolitan 
regions with PCI values above 1.3 the areas do not touch the diagonal, revealing that their 
relative position has changed for the worse. This is the case, for example, with regions such 
as Koln, Modena, Bologna and Karlsruhe. 
 

4. Conclusions 
 
As pointed out by Magrini (1999), empirical analyses of regional convergence usually 
employ available definitions of administrative regions without considering the potential bias 
created by this choice. To address this issue, we have examined the relative per capita income 
distribution of European metropolitan regions defined in terms of agglomerated population. 
In particular, we analyse the internal dynamics and external shape of the distribution between 
1995 and 2006.  
 
The shape of the PCI distribution changed significantly during this decade, with a higher 
concentration of probability around the European average in 2006. In addition, movements 
within the distribution have been significant, especially for regions near the extremes. That is, 
many of the poorest regions improved their relative positions over the study period, and many 
of the richest regions worsened their position. This paper therefore reveals a process of 
convergence in our sample of European metropolitan regions, in relative contrast with the 
trend generally detected among conventional administrative regions. The question is whether 
this is the result of using a different analytical technique or is mostly due to a different 
definition of region. As there are some papers (see, for example, Maza et al., 2010,6 and 
Arbia et al., 2006) that using the same analytical technique as in this one conclude non-
convergence for administrative regions, it should be obvious that the main reason for these 
differences lies in the different concept of region being used. Naturally, this implies that 
policy-makers should be very cautious when designing and implementing measures to 
address regional disparities in the EU, in particular when considering the type of regions to 
which these measures should be focused. 
 
 
 
 
                                                 
6 It is convenient to notice that, although Maza et al.’s paper (2010) analyses two periods, the one directly 
comparable to the sample period employed here tend to conclude in the existence of non-convergence or, at 
least, rather weak convergence. 
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Appendix: List of metropolitan regions 
 
Belgium: Bruxelles/Brussel, Antwerpen, Gent, Charleroi, Liège; Bulgaria: Sofia, Plovdiv, 
Varna; Czech Republic: Praha, Brno, Ostrava, Plzen; Denmark: Odense; Germany: Berlin, 
Hamburg, München, Köln, Frankfurt am Main, Stuttgart, Leipzig, Dresden, Düsseldorf, 
Bremen, Hannover, Nürnberg, Wuppertal, Bielefeld, Halle an der Saale, Magdeburg, 
Wiesbaden, Göttingen, Darmstadt, Freiburg im Breisgau, Regensburg, Schwerin, Erfurt, 
Augsburg, Bonn, Karlsruhe, Mönchengladbach, Mainz, Ruhrgebiet, Kiel, Saarbrücken, 
Koblenz, Mannheim, Münster, Chemnitz, Braunschweig, Aachen, Lübeck, Rostock, Kassel, 
Osnabrück, Oldenburg, Heidelberg, Paderborn, Würzburg, Wolfsburg, Bremerhaven, 
Heilbronn, Ulm, Pforzheim, Ingolstadt, Reutlingen, Cottbus, Siegen, Hildesheim; Estonia: 
Tallinn; Ireland: Dublin, Cork; Greece: Athina, Thessaloniki; Spain: Madrid, Barcelona, 
Valencia, Sevilla, Zaragoza, Málaga, Murcia, Valladolid, Oviedo, Pamplona/Iruña, 
Santander, Bilbao, Córdoba, Alicante/Alacant, Vigo, Granada, Coruña (A), Donostia-San 
Sebastián, Cádiz; France: Paris, Lyon, Toulouse, Strasbourg, Bordeaux, Nantes, Lille, 
Montpellier, Saint-Etienne, Rennes, Amiens, Rouen, Nancy, Metz, Reims, Orléans, Dijon, 
Clermont-Ferrand, Caen, Grenoble, Toulon, Tours, Angers, Brest, Le Mans, Avignon, 
Mulhouse, Marseille, Nice, Lens – Liévin; Italy: Roma, Milano, Napoli, Torino, Palermo, 
Genova, Firenze, Bari, Bologna, Catania, Venezia, Verona, Pescara, Caserta, Taranto, 
Padova, Brescia, Modena, Salerno, Prato, Parma, Reggio nell Emilia, Bergamo, Latina, 
Vicenza; Cyprus: Lefkosia; Latvia: Riga; Lithuania: Vilnius, Kaunas; Luxembourg: 
Luxembourg; Hungary: Budapest, Miskolc, Debrecen; Malta: Valletta; Netherlands: s' 
Gravenhage, Amsterdam, Rotterdam, Utrecht, Eindhoven, Tilburg, Groningen, Enschede, 
Heerlen, Breda, Haarlem, Dordrecht, Leiden; Austria: Wien, Graz, Linz, Salzburg, 
Innsbruck; Poland: Lódz, Kraków, Wroclaw, Poznan, Gdansk, Olsztyn, Czestochowa, 
Bielsko-Biala; Portugal: Lisboa, Porto; Romania: Bucuresti, Cluj-Napoca, Timisoara, 
Craiova, Constanta, Iasi, Galati, Brasov; Slovenia: Ljubljana, Maribor; Slovakia: Bratislava, 
Košice; Finland: Helsinki, Tampere, Turku; Sweden: Stockholm, Göteborg, Malmö; United 
Kingdom: London, Birmingham, Glasgow, Liverpool, Edinburgh, Manchester, Cardiff, 
Sheffield, Bristol, Belfast, Newcastle upon Tyne, Leicester, Exeter, Wrexham, Portsmouth, 
Worcester, Coventry, Kingston-upon-Hull, Stoke-on-Trent, Nottingham, Bradford-Leeds, 
Sunderland, Brighton and Hove, Plymouth, Swansea, Derby, Southampton, Northampton, 
Luton, Swindon, Stockton-on-Tees, Bournemouth, Norwich. 
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Fig. 1. PCI probability density functions (EU-27=1) in 1995 and 2006. The plots are 
calculated non-parametrically using the two-stage kernel density estimator proposed by 
Abramson (1982). 
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Fig. 2. Intra-distribution dynamics: the stacked density plot (EU-27=1). 
Conditional probability densities of transition between 1995 and 2006 income 
levels. The curves are obtained using a Gaussian product kernel density estimator, 
with a variable bandwidth based on the rule suggested by Bashtannyk and 
Hyndman (2001). The stacked conditional density plot was estimated at 50 points. 
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Fig. 3. Intra-distribution dynamics: highest density region (HDR) plot (EU-27=1). 
From darkest to lightest, the shaded bands are the smallest possible regions containing 
25%, 50%, 75% and 90% of the total conditional probability. The bullets indicate 
distribution modes. This plot is based on the conditional density functions estimated in 
Figure 2. 
 


