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1 Introduction

We aim to explore the formation of network structures over which a public good is
produced. We follow the network model by Bramoulle and Kranton (2007) in which two
agents who are directly linked to each other share the public good produced. If an agent
has no link, he produces the public good himself and no one else can utilize the good.
Agents should exert e¤ort to produce the public good. The bene�t that an agent gets
from the public good accrues from all the direct links that the agent has. Therefore,
an agent will determine his optimal e¤ort level depending on the network structure.
Bramoulle and Kranton (2007) analyze certain properties of the Nash equilibria of e¤ort
levels exerted in a given network structure. They show that at least one Nash equilibrium
of e¤ort levels exist for a given network, and the equilibrium is not unique for most of
the networks. Going beyond their analysis, we address stability of network structures.
However, the multiplicity of the equilibrium e¤ort pro�les becomes an issue to be tackled
in de�ning stability of network structures. In this paper, we suggest di¤erent stability
notions to take into account the issue of multiple equilibria when agents decide on how
much to contribute to provide a public good on a network.
Network models typically treat an agent�s payo¤ in a network structure as �xed and

given exogenously.1 However, in a network model where agents provide a public good
voluntarily, an agent�s payo¤ is determined by the equilibrium of the corresponding game.
Ballester et al. (2006) and Calvo-Armengol and Jackson (2006) analyze the formation
of networks of that type, but in their models there exist unique Nash equilibrium of the
actions taken by the agents in the network structure. In our network model with public
goods, there may be multiple Nash equilibrium of e¤ort pro�les in a given network.
The plan of the paper is as follows. In the next section, we state the model and

characterize the equilibrium of e¤ort pro�les for a given network structure. Then, we
show that conditions given to guarantee uniqueness of equilibrium in a standard public
good model with voluntary contributions (Cornes, Hartly and Sandler, 1999) are not
su¢ cient on a network structure unless every agent is directly linked to all other agents.
In the third section, we de�ne stability of network structure in the presence of multiple
equilibrium e¤ort pro�les in four di¤erent ways. In Section 4, we demonstrate the stability
notions de�ned using an extended example in a society of four agents.

2 The Model

Agents from the set N = f1; 2; ���; ng demand a public good. They can set links with
each other. We denote by ij the link between agents i and agent j. A network structure
that results from the links formed between agents is represented by a graph g. We use
the notation ij 2 g to indicate that there exist a link between agent i and agent j in
the network g. GN stands for the set of all possible networks for society N . When every
agent has direct links with all other agents in a network g, we call g complete network.
The set of neighbors of agent i in network g is de�ned as the agents who are directly
linked to agent i, N g

i = fj : ij 2 gg. N
g
i [ fig is the neighborhood of agent i in network

g. Each agent bene�ts from the public good produced by their neighbors.
In order to contribute to the provision of the public good, agent i in network g exerts

1A detailed and recent literature survey on economic and social networks is given by Jackson (2010).
Jackson and Wolinsky (1996) and Jackson (2002) study the stability and e¢ ciency of social and economic
networks when self-interested agents form or break links.
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e¤ort egi � 0. He bene�ts from public good as a result of his own e¤ort egi � 0 and the
sum of e¤orts exerted by his neighbors in g, eg�i =

P
j2Ng

i
egj . Public good is produced

from e¤orts in a one-to-one ratio. Agents enjoy the public good according to a strictly
concave bene�t function, b (e), with b : R+ �! R and where b (0) = 0, b0 (0) > 0 and
b00 (0) < 0. The cost of contribution for any agent is assumed to be linear: C (ei) = cei,
where 0 < c < b0 (0). The overall e¤ort pro�le eg = fegi g

g
i=1 shows how much agent i

contributes to the provision of public good in network g. Then, the net utility of agent i
in network g is

Ui (g; e
g) = b

�
egi + e

g
�i
�
� cegi . (1)

We test stability of a given network structure for breaking of existing links and addition
of new links one by one. In each network structure, agents decide non-cooperatively on
their e¤orts in provision of the public good. Therefore, an equilibrium outcome of the
game consists of a couple (g; eg), where g is the graph of network structure formed and
eg is an e¤ort pro�le exerted in g.

2.1 Stability of equilibrium e¤ort pro�les on �xed networks

Let e� denote the aggregate e¤ort level that satis�es b0 (e�) = c. In provision of the public
good on a given network g, the problem of agent i is given by:

max b
�
egi + e

g
�i
�
� cegi . (2)

Observe that a Nash equilibrium e¤ort pro�le eg = (eg1; � � �; e
g
i ; � � �; egn) is such that,

egi = max
�
0; e� � eg�i

	
: (3)

Let NE(g) = feg : eg is a Nash equilibrium e¤ort pro�le in gg denote the Nash equi-
librium e¤ort pro�les in a network g. NE(g) is non-empty for any network g (Theorem
1, Bramoulle and Kranton, 2007).
Following Bramoulle and Kranton (2007), we call a Nash equilibrium e¤ort pro�le

eg stable equilibrium e¤ort pro�le in g if and only if there exist a positive number
� > 0 such that for any vector " satisfying j"ij � � and egi + "i�, for all i; the se-
quence eg (n) de�ned by eg (0) = eg + " and eg (n+ 1) = f (eg (n)), where fi (eg) is
the best response of agent i to pro�le eg, converges to eg as n goes to in�nity. In a
stable e¤ort pro�le in a given network, no agent changes his equilibrium e¤ort level
in response to changes in the e¤orts exerted by his neighbors in that network. Let
S (g) = feg : eg is a stable equilibrium e¤ort pro�le in gg denote the set of stable equi-
librium e¤ort pro�les in g: Note that S (g) will be empty for some networks g (see Table
A1 for an example).

2.2 Uniqueness of equilibrium e¤ort levels on �xed networks

Cornes et al.(1999) provide uniqueness results for non-cooperative provision equilibrium of
the standard public good game where everyone bene�ts from contribution of everyone else.
Note that the complete network structure in our model corresponds to that standard case.
Given their results, the assumptions of our model on the bene�t and the cost functions
lead to a unique Nash equilibrium e¤ort pro�le in the complete network. However, these
assumptions are not enough to generalize the uniqueness of the Nash equilibrium for all
network structures of the same society.
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Suppose N = f1; 2; 3; 4g and b (e) = 2
p
e and c (e) = 1�

p
2p
2
e2 + 1p

2
. The function

b (�) and c (�) satisfy all the assumptions that guarantee the uniqueness for the complete
network, i.e. b (�) is strictly increasing and concave, with b (0) = 0, and c (�) is strictly
increasing and convex, with b0 (1) � c0 (0) (see Cornes et al., 1999). In the unique
Nash equilibrium e¤ort pro�le in the complete network each agent exerts the same e¤ort
level e = 0:37. However, in the circle structure, where each agent has 2 links (see g9 in
Figure 1), there are three di¤erent Nash equilibrium e¤ort pro�les: (0:47; 0:47; 0:47; 0:47),
(0; 1; 1; 0), and (1; 0; 0; 1).

3 Stability of Network Structures

Sections 2.1 and 2.2 stated that there exists at least one Nash equilibrium e¤ort pro�le
in any given network in our model, but there will typically exist multiple equilibria.
Restriction of e¤ort pro�les to Nash equilibrium e¤ort pro�les do not reduce the number
of possible payo¤s of agents to a unique value. Therefore, further restrictions will be
required to make precise what is meant by the stability of a network structure.
Note that, since agents� e¤orts are strategic substitutes in our model, breaking of

an existing link or formation of a new link will a¤ect possibly all agents in a network
structure. The agents whose approval is needed for breaking and/or forming links in a
given network structure will play an important role in the formation of a new network.
In the subsections below where we de�ne four di¤erent stability notions, we impose

di¤erent requirements related to how an agent evaluates possible payo¤s that will arise
when he breaks or forms a link, as well as to whose approval is needed to break or form
links.

3.1 Strongly Pairwise Stability

In the �rst de�nition, we assume that the formation of a new link requires just the
approval of two agents who form the link. Also, an agent can violate an existing link
freely, without the consent of the other agent who is part of that link. We also assume
that an agent will break an existing link, or agree to form a new link, provided that
there exists at least one Nash equilibrium e¤ort pro�le in the network structure that
will follow immediately after his action and gives him higher utility. In other words, we
are assuming optimistic agents who are also very myopic in the sense that they consider
only the best possible outcome after their own deviation. An opportunity for a gain in
a possible network structure is enough for an agent to form or break a link. The agent
does not care whether the immediately pro�table Nash equilibrium e¤ort pro�le in the
new network structure is going to be stable.
Formally, we call the network structure g with the equilibrium e¤ort pro�le eg as

strongly pairwise stable (SPS) if and only if

1.
8 ij 2 g, 8 eeg�ij 2 NE(g � ij) ; we have
Ui (g; e

g) � Ui (g � ij;eeg�ij) and Uj (g; eg) � Uj (g � ij;eeg�ij);
and

2.
8 ij 62 g, if 9 eeg+ij 2 NE(g + ij) such that Ui (g; eg) < Ui (g + ij;eeg+ij), then
Uj (g; e

g) > Uj (g + ij;eeg+ij) :
3



3.2 Weakly Pairwise Stability

In the second de�nition, approval requirements for adding or breaking a link are the same
as in the previous de�nition. On the other hand, in deciding to break or form a link,
an agent looks at whether a stable as well as a pro�table Nash equilibrium e¤ort pro�le
exists in the new network structure that will ensue one-step after his move.
Formally, we call the network structure g with the equilibrium e¤ort pro�le eg as

weakly pairwise stable (WPS) if and only if

1. eg is a stable equilibrium e¤ort pro�le in network g (i.e., eg 2 S (g));

2.
8 ij 2 g, 8 eeg�ij 2 S (g � ij) ; we have
Ui (g; e

g) � Ui (g � ij;eeg�ij) and Uj (g; eg) � Uj (g � ij;eeg�ij);
and

3.
8 ij 62 g, if 9 eeg+ij 2 S (g + ij) such that Ui (g; eg) < Ui (g + ij;eeg+ij), then
Uj (g; e

g) > Uj (g + ij;eeg+ij) :
3.3 Approval Stability

In the third de�nition, we consider that an agent can freely break one of the existing
links, but he will need the approval of all agents in order to form a link. Formally, we
call the network structure g with the equilibrium e¤ort pro�le eg as approval stable (AS)
if and only if

1.
8 ij 2 g, 8 eeg�ij 2 NE(g � ij) ; we have
Ui (g; e

g) � Ui (g � ij;eeg�ij) and Uj (g; eg) � Uj (g � ij;eeg�ij);
and

2.
8 ij 62 g, if 9 eeg+ij 2 NE(g + ij) such that Ui (g; eg) < Ui (g + ij;eeg+ij), then
9 k 2 N = f1; 2; ���; ng such that Uk (g; eg) > Uk (g + ij;eeg+ij) :

3.4 Full Approval Stability

In the fourth and last de�nition, agents in a given network structure g need the consent
of the whole society to break as well as to form links. Formally, we call the network
structure g with the equilibrium e¤ort pro�le eg as full approval stable (FAS) if and only
if

1.
8 ij 2 g, if 9 eeg�ij 2 NE(g � ij) such that Ui (g; eg) < Ui (g � ij;eeg�ij), then
9 k 2 N = f1; 2; ���; ng such that Uk (g; eg) > Ui (g � ij;eeg�ij);

and

2.
8 ij 62 g, if 9 eeg+ij 2 NE(g + ij) such that Ui (g; eg) < Ui (g + ij;eeg+ij), then
9 k 2 N = f1; 2; ���; ng such that Uk (g; eg) > Uk (g + ij;eeg+ij) :
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Figure 1: Network tree of four agents

4 An Example

We consider a society of four people. Note that there exist 11 possible network structures
in that case. In Figure 2, we list the graphs that represent possible network structures
formed by four agents. A line between two types of network structures in Figure 2 rep-
resents that it is possible to form one network structure from the other through breaking
an existing link or adding a new link.
We test stability of network structures under the de�nitions that were given in the

previous section. Table 1 summarizes the results (details are given in the Appendix). A
network structure in a row is stable according to a stability de�nition in a column when
an equilibrium e¤ort pro�le in the set given in the cell corresponding to that row and that
column is exerted. When there is no equilibrium e¤ort pro�le that makes the network
structure stated in a row stable according to the de�nition in a column, we leave the cell
corresponding to that row and that column empty.
We observe from the �rst column that the set of strongly pairwise stable network

structures (SPS) is empty. The second column shows that there does exist stable net-
work structures, including the discrete graph, under the weakly pairwise stability (WPS)
notion. Moreover, requiring approvals of all agents in forming links leads to existence of
stable network structures (third column). The more stringent is the approval requirement,
the higher will be the number of stable structures (fourth column).
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Table I: Stable network structures

4.1 Concluding Remarks

Our main aim was to explore the formation of stable network structures in a model
with public goods. The multiplicity of equilibria in the non-cooperative formulation of
network formation games brings out further di¢ culties in analyzing stability of network
structures. This contrasts with the cooperative game approach where payo¤s for agents
are predetermined and thereby the multiplicity of equilibrium issues are sidestepped. We
took issue with the multiplicity of equilibrium e¤ort levels exerted on a given network
structure, and we suggested di¤erent stability de�nitions for such network structures
under multiplicity of equilibria.
We demonstrated how these stability notions work for the network structures with

four agents where breaking and forming links is costless, and the cost of exerting e¤ort
is linear. In that example we observed the following:

1. In a given network structure when all other agents keep their existing links, there
will always exist an equilibrium e¤ort pro�le that will provide a higher utility for
an agent who breaks an existing link or a pair of agents who form a new link. Thus,
if a stability notion requires that no such pro�table deviation exists, then there will
be no stable network structure (the SPS case);

2. If the stability notion requires that there exist a stable equilibrium e¤ort pro�le
in providing the public good that will be pro�table for an agent who breaks an
existing link or a pair of agents who form a new link (the WPS case), then besides
the discrete, and the star network structures, g3 (in which one agent has no link
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and the others are linked in a line form) and g10( in which two agents are linked to
all others and two agents are linked only two agents) turn out to be stable;

3. If all agents�approvals are required in forming a new link but no such approval is
required when breaking links, only g4 in which all agents have one link becomes
stable (the AS case);

4. If all agents�approvals are required in both forming a new link and breaking existing
links, then the number of stable networks increases as it is expected (the FAS case).

Given a network structure, Bramoulle and Kranton (2007) de�ne the e¢ cient e¤ort
pro�le as the one that maximizes the sum of utilities of all agents. Following that def-
inition, the e¢ cient network structure can be de�ned as the one on which (the e¢ cient
e¤ort pro�le is exerted and) the sum of utilities is maximized over all possible network
structures. Bramoulle and Kranton (2007) prove that the Nash equilibrium e¤ort pro�les
of a given network structure cannot be e¢ cient. Therefore, it is straightforward to con-
clude that none of the stability notions given in the previous sections give rise to e¢ cient
network structures. The main result of the literature on the network formation holds in
our case as well, i.e. there is a strong tension between e¢ ciency and stability. On the
other hand, in a full approval stable (FAS) network structure, no one can improve himself
by forming a new link or by violating an existing link without hurting someone else. In
that sense, a full approval stable network structure is Pareto e¢ cient, even though it does
not maximize the sum of total utilities.
As a possible venue for future work, costly link formation may be considered. With

links that are costless to form, agents can add as many links as they can. However, sub-
stitutability of the e¤orts (in providing the public good) leads to the underprovision, and
hence, ine¢ ciency. The costliness of links may provide a balance against underprovision
and may work towards e¢ ciency.
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5 Appendix

In the following subsections, we explain how the network structures formed by four agents
are analyzed according to the stability de�nitions given in section 3. Note that Figure 1
presents what kind of network structures can be obtained from a given network structure
through formation or breaking of links. Moreover, the set of Nash equilibrium and stable
equilibrium e¤ort pro�les on the network structures are given in the Table A1.

Table II: Nash equilibrium and stable equilbrium e¤ort pro�les

5.1 g1 (Discrete)

g1 with (e�; e�; e�; e�) is a weakly pairwise stable network structure. The only possible
network structure that can be obtained from g1 is g2 in our model (One link at a time).
There is no stable e¤ort pro�le on g2 (Table A1). Therefore, no agent in g1will add a new
link according to the de�nition of weakly pairwise stability.
g1 with (e�; e�; e�; e�) cannot be strongly pairwise stable, approval stable or full ap-

proval stable: Agents 1 and 2 have the utility b(e�) � c(e�) on g1. When they add link
12, g2 is obtained (Figure 1). In g2; with an equilibrium pro�le (e1; e� � e1; e�; e�) agents
1 and 2 achieve utilities b(e�)� c(e1) and b(e�)� c(e2); respectively, where e1 + e2 = e�:
b(e�)� c(ei) > b(e�)� c(e�) for i = 1; 2. Hence, g1 with (e�; e�; e�; e�) cannot be strongly
pairwise stable. Besides, with eg2 = (eg21 ; e

� � eg21 ; e�; e�) agents 3 and 4 achieve the same
utilities as in g1 with (e�; e�; e�; e�). Therefore, they do not object the formation of the
link 12. g1 is not approval or full approval stable.

5.2 g3

g3 with (0; e�; e�; e�) is weakly pairwise stable. In g3; adding link 34 leads to g5, adding
link 23 leads to g6 and adding link 14 leads to g7. However, there is no stable equilibrium
e¤ort pro�le on either g5 or g6. Although (0; e�; e�; e�) is a stable equilibrium e¤ort pro�le
on g7, neither agent 1 nor agent 4 obtain a strict gain by adding link 14. breaking of links
12 or 13 leads to g2 on which no stable equilibrium e¤ort pro�le exist. Hence, according to
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the de�nition of weakly pairwise stability, g3 with (0; e�; e�; e�) becomes weakly pairwise
stable.
g3 with (0; e�; e�; e�) cannot be strongly pairwise stable, approval stable or full approval

stable: Agents 3 and 4 have the utility b(e�)� c(e�) in g3. When they add link 34, g5 is
obtained. In an equilibrium e¤ort pro�le eg5 = (e�; 0; e3; e� � e3), agents 3 and 4 achieve
utilities b(e�) � c(e3) and b(e�) � c(e4); respectively, where 0 < e3 < e�: b(e�) � c(ei)
> b(e�) � c(e�) for i = 3; 4. Hence, g3 with (0; e�; e�; e�) cannot be strongly pairwise
stable. Besides, with eg5 = (e�; 0; e3; e� � e3), agents 1 and 2 achieve the same utilities
as in eg3 = (0; e�; e�; e�). Therefore, they do not object the formation of the link 34. g3
cannot be approval or full approval stable.
g3 with (e�; 0; 0; e�) cannot be strongly pairwise stable, approval stable, full approval

stable or weakly pairwise stable. When agents 1 and 4 add the link 14, g7 is obtained.
With the Nash equilibrium e¤ort pro�le, eg7 = (e�; 0; 0; 0), in g7, the utility of agent 4 is
b(e�) and the utility of agent 1 is the same as in g3. Hence, g3 with (e�; 0; 0; e�) cannot
be strongly pairwise stable. Besides, with eg7 = (e�; 0; 0; 0) , in g7, agents 2 and 3 do not
become worse o¤ so that they do not object the formation of the link 14. Thus, g3 with
(e�; 0; 0; e�) cannot be approval or full approval stable. In the stable equilibrium e¤ort
pro�le eg7 = (0; e�; e�; e�), agent 1 achieves a higher utility, while agent 4 does not become
worse o¤. So, according to the de�nition of weakly pairwise stability, g3 with (e�; 0; 0; e�)
cannot be weakly pairwise stable.

5.3 g4

g4 with any one of the Nash equilibrium e¤ort pro�les eg4 = (e
g4

1 ; e
� � eg41 ; e

g4

3 ; e
� � eg43 ),

where 0 � e
g4
1 ; e

g4
3 � e� is approval and full approval stable. The links 13, 14, 23, 24

are possible to formed. Formation of any one of these links leads to g5: However, one
can easily �nd a Nash equilibrium on g5 in which at least one agent becomes worse o¤.
So addition of the link is not approved by that agent. For example, if e

g4
1 ; e

g4
3 > 0; with

eg5 = (0; e�; 0; e�), agents 2 and 4 object the addition of link 13. A similar argument
works when e

g4
1 ; e

g4
3 = 0: Besides, breaking link 12 or link 13 do not bring any bene�t to

whom breaks the link. An agent who breaks the link has to exert e¤ort e� in g2:
On the other hand, g4 with any one of the Nash equilibrium e¤ort pro�les eg4 =

(e
g4

1 ; e
� � eg41 ; e

g4

3 ; e
� � eg43 ), where 0 � e

g4
1 ; e

g4
3 � e� cannot be de�ned as weakly pairwise,

since eg4 is not stable e¤ort pro�le on g4:Moreover, g4 with eg4 cannot be de�ned strongly
pairwise stable. When agents 1 and 3 add the link 13, g5 occurs. In g4; agents 1 and 3 have
utility b(e�) � c(eg41 ) and b(e�) � c(e

g4
3 ), respectively: With the Nash equilibrium, e

g5 =
(0; e�; 0; e�), agent 1 and agent 3 achieve utilities b(e�). So, adding 13 is pro�table for agent
3 and 4, when e

g4
1 ; e

g4
3 > 0. A similar argument works for e

g4 = (e
g4

1 ; e
�� eg41 ; e

g4

3 ; e
�� eg43 ),

when eg43 = 0 or e
g4
1 = 0. Thus, g4 cannot be de�ned as strongly pairwise stable for any

Nash equilibrium e¤ort pro�le.

5.4 g5 (Line)

g5 with any one of the Nash equilibrium e¤ort pro�les eg5 = (e
g5

1 ; e
� � eg51 ; 0; e�) where

0 � eg51 � e� is full approval stable, but not approval stable, not strongly pairwise stable
or not weakly pairwise stable. First of all, eg5 is not a stable equilibrium pro�le for any
0 � e

g5

1 � e�. Therefore, g5 cannot be weakly pairwise stable. When agent 1 breaks
link 13, with eg4 = (0; e�; 0; e�) he achieves higher utility. Therefore, according to the
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de�nitions stated in section 3, g5 can be neither strongly pairwise stable nor approval
stable.
On the other hand, links 14, 24 or 23 are possible to be formed. If agents 1 and

4 add link 14, g6 is obtained. Any Nash equilibrium e¤ort pro�le in g6 is of the form
eg6=(eg61 ; e

g6
2 ; e

g6
3 ; e

�) where eg61 + e
g6
2 + e

g6
3 = e

�. Utility of agent 4 in g6 is as the same in
g5. Agent 1 would like to add link 14 only if e

g5

1 < e
g6
1 which implies e

g6
2 + e

g6
3 > e

g5
2 + e

g5
3 .

Therefore, either agent 2 or agent 3 becomes worse o¤, and objects the formation of link
14. Thus, link 14 is not formed when the approval of all agents required. Formation
of link 23 which leads to g6 is not accepted by agent 3. Formation of link 24 leads to
g9: (e

�=3; e�=3; e�=3; e�=3) and (e�; 0; 0; e�) are the Nash equilibrium e¤ort pro�les on g9.
However, g9 with (e�=3; e�=3; e�=3; e�=3) is not acceptable by agent 4. If e

g5

1 > 0; agent 1
objects g9 with (e�0; 0; e�). If e

g5

1 = 0; in g9 with (e
�0; 0; e�); utilities of agents 2 and 4 are

the same as in g5 so that formation of link 24 becomes meaningless. Hence, link 24 is not
formed when approval of all agents are required. Then, formation of no link is approved
by all agents in the society. Links 12, 13 or 34 are possible to break. Agent 3 has utility
b(e�) in g5 with eg5 = (e

g5

1 ; e
� � eg51 ; 0; e�). He cannot improve his utility. Agent 4 has

only one link in g5 where he has utility b(e�) � c(e�), and he cannot improve his utility
breaking his unique link. On the other hand, if e

g5

1 > 0; when agent 1 breaks link 13, with
eg4 = (0; e�; 0; e�) his utility increases to b(e�), but utility of agent 2 decreases. Agent 1
cannot break link 13. If e

g5

1 = 0; in g4 with (0; e
�; 0; e�), utilities of agents 2 and 4 are the

same as in g5 so that breaking of link 13 becomes meaningless. Similarly, agent 1 cannot
break link 12. Therefore, breaking of any link is not approved by all agents in the society.
Thus, g5 with any one of the Nash equilibrium e¤ort pro�les eg5 = (e

g5

1 ; e
� � eg51 ; 0; e�)

where 0 � eg51 � e� is full approval stable.

5.5 g6

g6 with anyone of the Nash equilibrium e¤ort pro�les eg6 = (e
g6

1 ; e
g6

2 ; e
g6

3 ; e
�) where 0 �

e
g5

1 + e
g6

2 + e
g6

3 � e� is full approval stable, but not approval stable, not strongly pairwise
stable or not weakly pairwise stable. First, eg6 is not a stable equilibrium pro�le. There-
fore, g6 cannot be weakly pairwise stable. If e

g6

2 > 0; when agent 2 breaks link 23, in e
g3

= (e�; 0; 0; e�) he achieves higher utility. If e
g6

2 = 0; either e
g5

1 > 0 or e
g6

2 > 0: Then, the
agent whose e¤ort is greater than 0 in g6 break one of his links, and he can achieve higher
utility in g3. Therefore, according to the de�nitions stated in section 3, g6 can be neither
strongly pairwise stable nor approval stable.
However, links 14, 24 or 34 are possible to be formed. When any one of these links is

added, the network structure occurred can be represented by a graph of type g8. A Nash
equilibrium in g8 is either of the type eg8 = (e

g8

1 ; e
� � eg81 ; 0; e�) where 0 � e

g8
1 � e� or of

the type (0; 0; e�; 0): In g8, any of these Nash equilibrium leaves at least one of the agents
worse o¤ than in g6: For example, when e

g6

2 > 0, agent 2 objects the formation of link 34
with eg8 = (e

g8

1 ; e
� � eg81 ; 0; e�). Therefore, formation of no link is approved by all agents

in the society. Links 12, 13 and 23 leads to a network structure that can be represented
by a graph of type g3. However, any one of the Nash equilibrium e¤ort pro�le (e�; 0; 0; e�)
and (0; e�; e�; e�) on g3 makes an agent worse o¤ than in g6: For example, if e

g6

2 > 0 or
e
g6

3 > 0; breaking of 23 is not approved by agent 1 with (e�; 0; 0; e�) on g3. Therefore,
breaking of no link is approved by whole society. g6 with any one of the Nash equilibrium
e¤ort pro�les, eg6 = (e

g6

1 ; e
g6

2 ; e
g6

3 ; e
�) where 0 � eg51 +e

g6

2 +e
g6

3 � e�; is full approval stable.
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5.6 g7 (Star)

g7 with eg7 = (0; e�; e�; e�) is weakly pairwise stable, but not approval stable, not full
approval stable and not strongly pairwise stable. When link 12 is formed, with (0; e�; 0; e�)
in g8; utility of agent 3 increases, utilities of agent 4, 1 and 2 are the same as in g7:
Therefore, g7 with eg7 = (0; e�; e�; e�) cannot be strongly pairwise stable, approval stable
and full approval stable. However, (0; e�; e�; e�) is stable e¤ort pro�le on g7. When a link
is formed in g7; g8 on which no stable equilibrium e¤ort pro�le exist represents the new
network structure. When a link is violated in g7; g3 represents the new network structure,
but breaking of any link in g7 is objected by agent 1 whose utility is b(e�) in g7: Hence,
g7 with eg7 = (0; e�; e�; e�) is weakly pairwise stable.
g7 with eg7 = (e�; 0; 0; 0) is full approval stable, but not weakly pairwise stable, not

approval stable, and not strongly pairwise stable. First, (e�; 0; 0; 0) is not stable e¤ort
pro�le. Hence g7 cannot be weakly pairwise stable in that equilibrium. Moreover, here,
no one would like to add a new link. Agent 1 can bene�t from breaking any one of
links 14, 13 or 12. So, g7 is not approval stable, and not strongly pairwise stable with
(e�; 0; 0; 0). However, breaking any one of the links is not approved by at least one of
agents 2, 3 or 4. Hence, g7 with eg7 = (e�; 0; 0; 0) is full approval stable.

5.7 g8; g9 (Circle), g11 (Complete)

Using similar arguments as above, one can easily show that g8, g9 , g10 and g11 are de�ned
as full approval stable with any Nash equilibrium e¤ort pro�le exerted on each graph.
However, these graphs are not stable according to other de�nitions.

5.8 g10

g10 with (0; e�; e�; 0) is weakly pairwise stable, but not strongly pairwise stable, not
approval stable and not full approval stable. When link 23 is formed, in g10 with
(0; e�=2; e�=2; 0), agent 2 and 3 become better-o¤, while agents 1 and 4 do not be-
come worse-o¤. Therefore, g10 with (0; e�; e�; 0) is not approval stable, not full approval
stable and not strongly pairwise stable. (0; e�; e�; 0) is stable e¤ort pro�le on g10. When
a link is violated on g10; g8 is obtained. When a link is formed on g10; g11 is obtained.
However, there is no stable e¤ort pro�le on either g8 or g11. Thus, g10 with (0; e�; e�; 0)
is weakly pairwise stable.
On the other hand, g10 with

�
e
g10

1 ; 0; 0; e
� � eg101

�
is full approval stable, but not

weakly pairwise stable, not strongly pairwise stable and not approval stable. First,�
e
g10

1 ; 0; 0; e
� � eg101

�
is not a stable equilibrium pro�le for any 0 � eg101 � e�. Therefore,

g10 with
�
e
g10

1 ; 0; 0; e
� � eg101

�
cannot be weakly pairwise stable.When link 14 is violated,

with (0; e�; 0; e�) on g9;either that both agents 1 and 4 becomes better o¤ or that one of
the agents 1 and 4 becomes better o¤, but the other does not become worse o¤. Moreover,
agents 2 and 3 do not become worse-o¤ in any case. Hence, g10 with

�
e
g10

1 ; 0; 0; e
� � eg101

�
is not weakly pairwise stable, not strongly pairwise stable and not approval stable. For-
mation of a new link is not bene�ciary for the agents (Only agents 2 and 3 can add a
link, but there is no incentive for them). Note that breaking of any link is not approved
by at least one agent. So, g10 with

�
e
g10

1 ; 0; 0; e
� � eg101

�
is full approval stable.
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