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Abstract 
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1 Introduction

This paper seeks to address one of the important puzzles in economic growth:
whether (and how) stochasticity in economic growth is explained by possible
stochasticity in the demographic system? Extant literature in demography
and economic growth for the past three centuries since Malthus (1798) have
impelled us to believe that despite having distinct evolutionary characters,
perturbations in demographic system is very likely to induce instability in eco-
nomic growth in the long run. However, the mechanism involved to explain
this phenomenon banked upon stationary system and Markov process with-
out non-linearity assumption (Mishra, Diebolt and Parhi, forthcoming). An
alternative route would be to exploit the temporal evolutionary properties of
both systems to explain reasons of stochasticity in economic growth. This pa-
per adopts this route and exploits time dynamics of aggregate population to
explicate the nature of persistence in economic growth.

Till date the conventional practice in (empirical) economic growth mod-
els has been to treat population growth as stationary implying that stochastic
shocks to the population series would completely disappear in the long-run
and thus would exert no measurable impact on its long-run mean and variance.
Statistically, a stationary series may still accommodate long-memory features,
however the shock convergence patterns of short-memory and long-memory
stationary processes are vastly different (e.g., Bailey, 1986). From economic
theoretic and policy perspectives such differences are interesting as they de-
termine economies’ speed and pace of growth over time. This is so because,
the longer the demographic shocks take time to taper-off, the longer it takes
for the economy to stabilize in the long-run. Recent research (e.g., Boucekkine
et al., 2002; Azomahou et al., 2009) have rendered similar observations us-
ing dynamic overlapping generations and spatial vector autoregressive models
but have remained silent on the plausibility of stationary population growth
assumption. This paper aims to examine this convention.

Questions may arise then, what contributes to the stochasticity (and non-
stationarity) in population and consequently in economic growth? Can pop-
ulation growth be characterized by a long-memory process? Is the observed
long-memory in economies’ growth in recent studies (e.g., Michelacci and Zaf-
faroni, 2000) attributable to a possible long-memory in population growth? To
answer, we build an analytical framework and show that long-memory in eco-
nomic growth arises due to the presence of long-memory in population growth.
Evidence of long-memory is then provided by empirical examination for a set
of countries over the period 1950-2004.

Indeed, population growth is not a purely demographic phenomenon as
its evolutionary mechanism is contingent upon the behavioral changes occur-
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ring within both the economy and the environment (see e.g., Birdsall et al.,
2001). Due to the remarkable adaptive capability and response to subtle en-
vironmental and economic variations, human demographic system displays far
more complex dynamics than any other natural demographic systems. Unique
to its very nature, a concurrent existence of both independent and interac-
tive mechanisms contribute to the persistence of shocks in the demographic
system and ultimately lead to stochastic memory features in its evolution-
ary process.1 Prskawetz and Feichtinger (1995) for example, showed that the
underlying mechanism describing the demographic system is exceedingly com-
plex, characteristically non-linear and may result in a pattern which exhibits
chaotical growth dynamics.

Similarly, long-memory in economic growth has been investigated by
Michelacci and Zaffaroni (2000) where fractional convergence of output has
been possible by stochastic technological shocks and induced by cross-sectional
aggregation of growths. Although admirable set of research have stemmed fol-
lowing this tradition, a clear demographic dimension to the explanation of
long-memory in economic growth seems to be missing. Although some ex-
ceptional recent research (e.g. Gil-Alana, 2003; Mishra, 2008) independently
investigated the fractal structure of population, they did not lend further eco-
nomic insights of the role of fractional population growth in the persistence of
economic growth. This paper attempts to explain long-memory in economic
growth by possible stochasticity in population growth. Very often though the
long memory effects are confused with hysteresis effect, it is important to bear
in mind the objective of the paper lies in the stochastic long-memory aspect of
demographic-economic growth system. Because the hysteretic effect is a per-
sistence in the series like the long memory effect, nevertheless, the long term
behavior of the hysteretic series is very different from the long term behav-
ior of the long memory series. Very importantly, the hysteretic series are not
mean reverting whereas the long memory series are (if correctly differenced).
A mean reverting long-memory demographic system is the subject of interest
in this paper.

Thus, novelty of the paper thrives on the modeling idea of demographic
dynamics in a stochastic setting and in our case with a long-memory sys-
tem. Gil-Alana (2003) only tested if population growth in OECD countries
is fractionally integrated without providing economic theoretic reasons: why
would this series follow such a pattern. Similarly, Mishra (2008) underlined
the relevance of long-memory in demographic system and did some exercise

1Shaffer (1987) argues that demographic stochasticity is caused by (i) chance realizations
of individual probabilities of death and reproduction in a population and (ii) by environ-
mental stochasticity from a nearly continuous series of small or moderate perturbations.
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with an extended Solow-Swan model. Once again, the argument lacked a
clear economic and econometric theoretic mechanism which would generate
long-memory in demographic system. Instead, our contribution provides an
economic demographic link and shows that how long-memory in economic
growth is a consequence of stochastic long-memory in population growth. Our
contribution is a significant improvement over Gil-Alana (2003) and Mishra
(2008) in that we calculate the long-run mean and variance of output as a
function of long-memory in population growth. This is important in light of
the predictive power of the economic system and adoption of strategies in coun-
tering stochastic shocks in the longer run. In the next section (Section 2), we
characterize long-memory in demographic and economic growth system and
provide analytical framework to investigate the long memory in demography-
economic growth system. Section 3 provides econometric methodology and
empirical illustration and finally section 4 summarizes the results with policy
implications.

2 Characterizing long-memory in population

and economic growth

2.1 Long-memory in population growth

To demonstrate that a long-memory in population growth gives rise to a long
memory in economic growth, it is necessary to characterize population growth
with fractional dynamics. For the purpose, define population growth (nt) as
the difference in fertility (ft) and mortality (dt) rates while accounting for net
migration rate (mt) in the economy. This is written as

nt = (ft − dt) +mt (1)

Although nt is normally assumed to be stationary in most empirical growth
literature, it is still unknown whether the demographic system (being in con-
tinuous interaction with the economy) would tend to converge to a stable
long-run equilibrium level. Indeed, while stability (or stationary) assumption
is an apparent possibility, it may not be the only possibility. In fact, charac-
terization of nt with a fractal structure (as in definition 1) allows persistence
of shocks with varying convergence patterns of which stationarity could be a
limiting case.

Definition 1 Denote d as the integration parameter lying on the real line,
k as the lag length. Now, suppose that nt is a process with autocovariance

3



function γ(k) ∼ C(k)k2d−1 as k → ∞, C(k) ̸= 0, where k defines the lag
between current and distant observations. Then nt is a long-memory process
if the autocovariance function decays slowly over time.

Persistence in population growth as reflected by the slow decaying auto-
correlation function in definition (1) may result from a combination of sources.
For instance, if the transition of the demographic state is non-stationary, then
the presence of a stochastic shock in one state would move over time to succeed-
ing states. The interacting system - in our case - the economy will be arguably
perturbed due to transition of stochastic shocks from the past. Other mech-
anism to generate long memory in population growth could be the non-linear
dynamics with short-memory. For instance, the autocorrelation function of
a non-linear Markov process can also exhibit long-memory persistence (with
convergence).2

2.2 Long-memory in output growth

Definition 1 is utilized below to demonstrate how stochastic demographic sys-
tem may induce volatility in economic growth. Specifically, we show that the
conditional mean and variance of k−period (or long-run) aggregate output is
a function of stochastic memory in population growth. Assume the following
economic-demography growth mechanism (EDM):

yt = γnt−1 + ηt (2)

where ηt ∼ iid(0, σ2
η). Relation (2) implies that past population growth affects

current output growth. Lagged - not instantaneous effect - occurs in this re-
lation due to the inevitability that the economy takes time to respond to a
shock in nt necessitating thus the EDM to thrive on the natural feedback ef-
fects. The motivation behind the EDM representation in (2) follows from two
notable research, viz., Easterlin (1966) and Dasgupta (1995). Easterlin (1966)
provided the cornerstone of the widely discussed economic-demographic inter-
actions with feedback effects. He argued that the co-evolutionary pattern of
the economic-demographic system determines long-swings in economic growth.
Dasgupta (1995) formally presented the feedback mechanism in the form of re-
lation (2) assuming, like most of the conventional literature, the stationarity
of population growth.3 Thus, a stochastic shock in this system will inevitably

2Thanks to the anonymous referee who pointed out this aspect.
3One may well present the converse case, i.e., causation running from economic growth

to the demographic growth. But here we give importance to demographic system as it is
human population which control the economy first of all.
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converge to mean value in the long-run. After initial spurts, the system is
likely to be stable and thus, initial perturbations are not forever sustained in
the system. That is the system does not contain any memory of past shocks.
However, demographic system, like any other system, evolves over time and
there is clear possibility of a shock becoming persistent. It might also be the
case that the shocks may not even converge in the long-run. This leads to the
following proposition.

Proposition 1 Assuming that the EDM relation holds and nt possesses a
long-memory under definition 1, then long memory in output growth, yt, can
be represented by the long memory in population growth.

Proof

Basically, we show that the long-run conditional mean and variance of output
is a function of long-memory in nt. We begin by modeling output growth (yt)
and aggregate population growth (nt) in an autoregressive (AR) fractionally
moving average(MA) (ARFIMA(p,d,q)) framework, where the AR order is
given by p and MA order by q. d is the fractional order of integration. The
ARFIMA (p,d,q) has the advantage of endogenizing the effect of stochastic
shocks in terms of past dependence as well as specifying the evolution of the
system with a history dependent character. Degree of imperfection of the
system or the interacting system is reflected by the corresponding degree of
order of integration. For instance, modeling population growth, nt in ARFIMA
(p,d,q) setting implies that

(1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p)(1− L)dnt

= (1 + θ1L+ θ2L
2 + · · ·+ θqL

q)ϵt
(3)

with usual definitions: E[ηtϵs] = σ2
τϵ if t = s, 0, otherwise. In the above, L is

backward shift operator, with the usual property that Lnt = nt−1, L
2nt = nt−2,

etc. Formally, (1− L)d can be expressed by power series expansion:

(1− L)d =
∞∑
j=0

(−1)j
(
d(d− 1)(d− 2) . . . (d− j + 1)

j!

)
(4)

where d(d−1)(d−2)...(d−j+1)
j!

is the binomial coefficient defined for any real number

d and non-negative integer j. The intuitive exposition of (1 − L)d for a time
series can be traced via their infinite order MA or AR representations. In this
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instance, expressing MA(∞) of (1 − L)d for the time series would mean that
we have an expression:

∑∞
j=0 hjL

j, where h0 = 1 and

hj =
−dΓ(j − d)

Γ(1− d)Γ(j + 1)
=
j − d− 1

j
hj−1, j ≥ 1. (5)

Equation (5) is the impulse response function of the effect of a stochastic shock
on nt distributed over time. The interpretation of d with different range of real
values are presented in Table 1.

Table 1: Fractional components and their interpretation
d Interpretation
0 : Short-memory population growth, log population is I (1)
1 : Non-stationary population growth, log population is I (2)

< 0, 0.5 > : Long-memory population growth, log population is I (d+1)

The next step is to show that a stochastic long-memory in demographic
system may result in a long-memory stochasticity in economic growth. Granger
(1980) in an important work showed that long-memory in aggregate variable
might arise due to the aggregation of short-memory character of individual
components. Since population growth is an aggregate time series, it might be
possible to describe the process as a long memory because of possible short-
memory features of its components, i.e., population age-structures. However,
since demographic process is different from macroeconomic or financial time
series, the individual components of the aggregate (population) do not follow
independent distributions because of the existence of overlap of population
generations and latter inclusion in other population groups.4 We will not
therefore not consider Granger’s (1980) aggregation principle as a source of
long-memory in aggregate population. However, economic growth may well
be described by Granger’s process. Again, since demography may affect dif-
ferent components of the economic system, we discuss, below for the sake of
brevity, the long memory effect of aggregate population on aggregation eco-
nomic activity. What we show below is that the conditional mean and variance
of output growth is a function of stochastic long-memory parameter of pop-
ulation growth. This implies that if there is slow-converging stochastic shock
in the population growth, the mean and variance of long-run output will be
non-constant and will rather depend upon the degree of convergence of long-
memory component of demographic shocks.

4For instance, young age population after say 15 years are in working age basket, similarly
working age after say 20 years are in retired cohort basket. In this case, because of the explicit
overlap, it is not possible to say that aggregation of different orders of integration from each
component of the aggregate population gives rise to long memory.
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To elucidate, in (3), we assume ϕ(L) ̸= 0 for z ≤ 1. Re-writing (3) as nt =
ϕ(L)−1(1−L)−dθ(L)ϵt and denoting ω(L) = ϕ(L)−1, where ω(L) =

∑∞
i=0 ωiL

i

we use the identity ω(L)ϕ(L) = 1 to find the unknown coefficients recursively:

ω0 = 1,
ω1 = ϕ1ω0,
ω2 = ϕ1ω1 + ϕ2ω0 and so,
ωi = ϕ1ωi−1 + · · ·+ ϕpωi−p for i = p, p+ 1, · · · .

Now utilizing (1 − L)−d =
∑∞

i=0
(d+j−1)···(d+1)d

i!
Li and multiplying ϕ(L)−1, we

get

(1− L)−dϕ(L)−1 =
∞∑
j=0

zjL
j (6)

where
zj = 1 if j = 0,

zj = ω0
(d+j−1)···(d+1)d

j!
+

ω1
(d+j−2)···(d+1)d

(j−1)!
+ · · ·+ ωj−1d+ ωj , otherwise.

And finally, for j ≥ 0, describe
ψj = zj + zj−1θ1 + · · · zj−qθq
with z−1 = · · · = z−q = 0.

Denote by Y
(k)
t the cumulative k−period output, yt. Let’s use the MA(∞)

representation of yt from above:

yt =
∞∑
j=0

ψjϵt−j. (7)

To know the effect of stochastic population shocks on aggregate output, we
utilize EDM and MA(∞) representations such that:

Y
(k)
t =

∑k
l=1 yt+l = γ.

∑k
l=1

∑∞
j=0 ψjϵt−1−j+l +

∑k
l=1 ηt+l

Representing ζ
(k)
i ≡ ψi + ψi−1 + · · ·+ ψi−(k−1),

we can write
Y

(k)
t = γ.

∑∞
i=0 ζ

(k)
i ϵt−1−j+l +

∑k
l=1 ηt+l

The conditional expectation of Y
(k)
t then equals:

E
[
Y

(k)
t

]
= γ.

∞∑
i=0

ζ
(k)
i ϵt−1−j+l (8)
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and the conditional variance of k−period cumulative output is:

V art

(
Y

(k)
t − E

[
Y

(k)
t

])
= γ2.

∑k
l=1

(
ζ
(k)
k−l

)2

σ2
ϵ + γ.

∑(k)
k−l σϵη + σ2

η

(9)

Expressed in terms of ζ, aggregate output is now a function of long-
memory in population growth, which completes the proof. �

3 Empirical example

Evidence on long-memory in nt can be obtained by estimating d (the fractional
integration parameter) using real world population data. For illustration, we
have used a set developing countries’ aggregate and age-structured population
data (viz., population age 0-14, 15-64, and 65+) for the period 1950-2004 and
have estimated d employing modified log periodogram regression (MLPR) of
Kim and Phillips (2000).5 All data have been obtained from the World Bank
Development Indicators.

The MLPR method is a modified version of the following Geweke and
Porter-Hudak (GPH, 1983) log periodogram regression:

ln[In(λζ)] = −2dln|1− eiλζ |+ ln(fu(λζ)) + ηj (10)

where the periodogram ordinates of population growth (left hand side of the
equation) are regressed over the spectral representation of the error term and
the transformation of (1 − L)d in the frequency domain. The ordinates are
evaluated at the fundamental frequencies ζ = 1, ..., ν. Kim and Phillips (2000)
note that (10) is a moment condition and not a data generating mechanism.
The modified GPH, i.e., the MLPR is given as6:

ln(IV (λζ)) = α− dln|1− eiλζ |2 + u(λζ) (11)

in which the periodogram ordinates, ln(In(λζ)) are replaced by ln(IV (λζ)) =
Vn(λζ)VP (λζ)

∗ with α = ln(fu(0)) and u(λζ) = ln[In(λζ)/fn(λζ)]+ln(fu(λζ)/fu(0)).
Note that Vn(λζ)VP (λζ)

∗ is the discrete fourier transform and is to be used in
the regression instead of ln(IV (λζ)).

5The data covers 63 developing countries (the list of countries are available with the
authors.

6For details refer to Kim and Phillips, 2000
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A practical problem is the choice of ν, the number of periodogram or-
dinates to be used in the regression. Geweke and Porter-Hudak (GPH, 1983)
suggests that the optimal ν = Tα where α = 1/2 and T is the sample size.
The choice involves a tradeoff that may be described as follows. The smaller
the bandwidth, the less likely the estimate of d is contaminated by higher fre-
quency dynamics, i.e., the short-memory. However, at the same time smaller
bandwidth leads to smaller sample size and less reliable estimates. As in the
case of GPH method, the smaller value of α (as in ν = Tα) implies the smaller
number of harmonic ordinates (i.e., the smaller bandwidth) will be used for
the estimation of d. Generally, in empirical analysis, preference is given to
increasing the value of α to check for the consistency of the estimate of d al-
though simulation experiments can confirm the validity of the selection. For
our purpose, we have used α = 0.60 through α = 0.80 to estimate d. We choose
α = 0.7 based on a Monte Carlo simulation experiment (see table below) where
we have minimum bias for that bandwidth.7

Table 2: Monte Carlo simulation for choice of bandwidth

Bandwidth Estimated bias Significance RMSE bias
τ=0.60 0.018 3.03 0.019
τ=0.65 0.021 2.86 0.023
τ=0.70 0.014 2.20 0.015
τ=0.75 0.015 2.47 0.016
τ=0.8 0.017 2.83 0.018

Figure 1 plots density functions of estimated d values8 for 63 developing
countries. The logarithm of total and age-structured population series have
been first differenced to calculate growth rates. In the graph MLPR for total
population is denoted byMLPRtotpop. Similar denotation are used for different
age-structures. From Figure 1, notice that d values for all series exhibit clear
long-memory patterns. The hypothesis we tested is whether there is short-
memory against the alternative of long-memory. While tails of the density plots
mark the presence of short memory and unit root non-stationary processes,
most countries’ population growth fall within the non-stationary range with
convergent shocks. The age-structured population growth series also exhibit

7Davidson’s (2007) Time Series Modelling software is used to carry out the simulation
experiment which is built for the GPH model.

8The standard errors and d values are available from the authors upon request. The
series have been tested and adjusted for outliers and structural breaks.
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Figure 1: Modified log-periodogram estimation of long-memory for total and
age-structured population growth for developing countries
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similar patterns. The finding supports our conjecture that population growth
might exhibit long-memory. Similar results were obtained by Gil-Alana (2003)
for some OECD countries.

4 Conclusion

In this paper we introduced long-memory mechanism in demographic system
to explain possible stochasticity in economic growth. The analytical results
presented in the paper demonstrated how the long-run conditional mean and
variance of aggregate economic growth would depend on the convergence pat-
tern of shocks in demographic system. Empirical illustrations for a set of
developing countries basically supported our proposition. A possible implica-
tion of our result is that long-run economic policy of a country needs to re-
consider stabilization of demographic shocks at the first place before adopting
control measures for other macroeconomic fundamentals. After all, a stable
demography-economic co-evolution is necessary for a sustainable and stable
growth.
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