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Abstract 

This paper investigates the impact of lumpy capital adjustment on productivity at the firm level using data on Japanese 
manufacturing industries. We estimate stochastic production frontiers, taking firm heterogeneity into account. We find 
that investment spikes are negatively related to technical efficiency. Furtermore, we find a negative relationship 
between machinery capital age and measured efficiency.
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1 Introduction

In recent years, a number of empirical studies have attempted to establish the rela-

tionship between technology, investment and productivity. Power (1998) examined the

link between investment and productivity and found virtually no evidence of a positive

correlation between productivity and high levels of investment using pooled regressions

at the U.S. plant level. Huggett and Ospina (2001) investigated the effect of technol-

ogy adoption on productivity growth. They calculated total factor productivity (TFP)

growth at the plant level using Colombian data. They regressed TFP growth on current

and past values of technology adoption measures. They found evidence that productiv-

ity growth falls when a plant undertakes a large equipment purchase and that the effect

of the large investment on productivity growth continues to be negative for subsequent

years. Sakellaris (2004) also used the U.S. plants data and obtained similar results.

These findings indicate that lumpy investment episodes result in the costly adoption of

new technology embodied in new capital.

These authors employ a two-stage approach to assess the impact of investment spikes

on productivity or productivity growth. In the first stage, they construct productivity

variables such as labor productivity, TFP or TFP growth. In the second stage, they

regress productivity variables on current and past investment spike dummies. In con-

trast, our alternative approach is based on estimating a stochastic frontier production

function. Our methodology incorporates the technical efficiency effects induced by large

investment episodes that embody new technology and involve costly adoption.

2 Linking Productivity and Investment Spike

We obtain firm-level TFP measures by estimating a log-linear Cobb-Douglass production

function for each industry. Individual firms are indexed i, and industries are indexed by

j, for each year t in the sample:

ln yit = ln ajt + αj ln kit + βj ln lit + γj lnmit + ϵit (1)

where yit is gross output. Since coefficients on the log capital kit, labor lit and material

inputs mit can vary by industry, this specification allows for different factor intensities

in different industries. An additional specification is

ln ajt =
∑
t

fyt +
∑
j

indj (2)

where fyt is a year dummy and indj is an industry dummy. Industries are classified at

the two-digit SIC level.

Consider the stochastic frontier production function for firm data. We postulate that

the error term in equation (1) is composed of two different types of disturbances:

ϵit = uit + vit (3)
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where uit is a non-negative random variable associated with technical efficiency of pro-

duction, and vit is assumed to be i.i.d. with N (0, σ2
v). The term uit is assumed to

be distributed independently of vit. Following Battese and Coelli (1993), the technical

efficiency effect in the stochastic frontier model is specified by

uit = zitδ + wit (4)

where zit is a vector of explanatory variables associated with firm specific technical

efficiency, δ is the corresponding vector of parameters, and wit is a random error. The

term wit is assumed to follow a N (0, σ2) distribution truncated from below at −zitδ,

which is consistent with uit being a non-negative truncation of N (zitδ, σ
2).

In this paper, zitδ is assumed to be defined by

zitδ = δage,jageit +
4∑

τ=0

δspk,τspikeit−τ + δtrd,jt (5)

where ageit is machinery age for individual firms, spikeit is an investment spike dummy

and thus spikeit−τ is a dummy based on the length of time since the last investment

spike, τ . A time trend is also included in the explanatory variables. Since coefficients

for the machinery age and time trend variables can vary by industry, this specification

allows for industry differences.

The parameters of the stochastic production frontier and the model for the technical

efficiency effect are estimated simultaneously using the maximum likelihood method.

Following the suggested parameterization by Battese and Coelli (1993), we let σ2
s ≡

σ2 + σ2
v and λ ≡ σ2/σ2

s . From the distributional assumptions on uit and vit, the log

likelihood function can be written as

lnL = −nT

2
log 2π − nT lnσs −

1

2σ2
s

n∑
i=1

T∑
t=1

(ϵit − zitδ)

+
n∑

i=1

T∑
t=1

lnΦ
(
(λϵit + (1− λ) zitδ) /

√
λ (1− λ)σ2

s

)
−

n∑
i=1

T∑
t=1

lnΦ
(
zitδ/

√
λσ2

s

)
(6)

where Φ (·) is a distribution function of a standard normal variable.

3 Data

We use annual firm-level data from the Development Bank of Japan’s Corporate Finance

Databank. The data consist of financial statements for publicly traded firms listed on

either the first or second sections of the Tokyo, Osaka or Nagoya stock exchanges. We
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construct a panel dataset of the Japanese manufacturing firms in eleven industries cov-

ering the period 1980-2004. Industries at the two-digit level are as follows: Chemicals,

Petroleum and Coral, Rubber, Stone Clay and Glass, Iron and Steel, Nonferrous Met-

als, Fabricated Metals, Nonelectrical Machinery, Electrical Machinery, Transportation

Equipment, and Precision Instruments. The resulting sample contains 623 firms.

We calculate output as firm sales (total value of shipments) plus changes in inven-

tories of finished goods and work in process. mit is material expense for intermediate

goods, which includes inputs from contracted work. lit is total employment, and kit is

real capital stock. Real capital stock is calculated separately for buildings, structures,

machinery, equipment, and vehicles using the perpetual inventory method and then ag-

gregated. We calculate investment as the change in book value of capital stock plus

depreciation expense reported by the firm. The output, material inputs, and investment

are at constant prices. To reduce the impact of potential accounting manipulations of

book values of capital stock, we use the earliest available book value of capital as the

initial value in the DBJ dataset. This starting date occurs before 1971. Depreciation

rates for each type of capital stock are taken from Hayashi and Inoue (1991).

In accordance with the literature, we define investment spikes only for machinery.

Machinery capital accounts for the largest share of total investment and is often assumed

to embody technological progress. Power (1998) defines a lumpy investment episode at

the plant level as occurring if the gross investment rate exceeds 0.2. This threshold

is intended to eliminate routine maintenance expenditures. We use firm level data. A

firm consists of several plants. Each plant produces different products in the firm’s

range. Investment timing varies across plants. In order to detect an unusual amount

of investment at the firm aggregation level, we use a large deviation from the normal

investment.

To identify lumpy investment episodes at the firm level, we construct a standardized

measure of the investment-to-capital ratio. Following Caballero, Engel and Haltiwanger

(1995), we subtract from the original observations the corresponding firm-level mean and

divide this difference by the corresponding firm-level standard deviation. We classify an

observation as a spike if the standardized investment-to-capital ratio exceeds 1.5. In

experiments not shown in this paper, essentially the same results were obtained using

1.75 and 2.0 thresholds.

Machinery age is measured as follows. Under the declining balance depreciating rule,

the book value of machinery and its acquisition value satisfies

bt = (1− dt)
n qt

where bt is the book value of capital, qt is the acquisition book value, and dt is the

accounting constant depreciation rate in year t. In this equation, n is assumed to be the

machinery age. The accounting depreciation rate is defined by dt = gt/ (bt + gt), where

gt is depreciation expense. Taking the log of both sides of the equation above yields the

3



Table I: Estimation results
Coeffcient Standard Coeffcient Standard

error error
Machinery age: δage,j Time trend: δtrd,j

Chemicals -.104 *** (.012) .025 *** (.005)
Petroleum and Coral -.040 (.055) .075 ** (.038)
Rubber -.241 *** (.049) .013 (.035)
Stone Cray and Glass -.031 * (.016) -.013 (.010)
Iron and Steel -.331 *** (.037) .004 (.025)
Nonfferous Metals -.002 (.012) -.072 *** (.012)
Fabricated Metals -.064 *** (.019) -.034 *** (.012)
Nonelectrical Machinery -.144 *** (.012) .019 *** (.005)
Electrical Machinery -.111 *** (.009) .069 *** (.004)
Transportation Equipment -.403 *** (.032) .056 *** (.014)
Precision Instruments -.537 *** (.070) .106 *** (.032)

Investment spike: δspk,τ
Spiket -.318 *** (.063)
Spiket−1 -.393 *** (.065)
Spiket−2 -.369 *** (.067)
Spiket−3 -.326 *** (.063)
Spiket−4 -.310 *** (.064)
Variance parameters:
σs .645 *** (.013)
λ .979 *** (.001)
Number of observations 12646
Log likelihood 169.28
Significance: *** at 1%, ** at 5%, and * at 10% level, respectively.

machinery age measure

ageit =
ln qit − ln bit

ln (bit + git)− ln bit

4 Empirical Results

Our results are presented in Table I. We use machinery age, investment spikes and a

time trend as determinants of technical efficiency. The estimated coefficients of the tech-

nical efficiency model are highly significant. Coefficients on machinery age are negative

across all industries, indicating that older machines are less efficient than younger ones

(coefficients are significant in all industries except two). The positive coefficients on the

time trend suggest that production efficiency of manufacturing firms tends to increase

throughout the sample period. This may imply the existence of technology spillover

effects. The exception to this observation is the metals industries, which seem to have

an opposite tendency regarding the time trend.
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The negative estimates for all investment spike dummies indicate that large invest-

ment episodes reduce TFP levels but have persistence effects even after the timing of the

spike. This tendency implies that the adjustment cost of large investment is substantial

and that it is not a one-time loss. Drops in production are likely to be persistent after

the large investment episodes.

Vintage capital models assume that technical progress is embodied in new capital.

Firms invest to reap benefits of technical progress embodied in new capital. As in the

models of Nelson (1964), Hulten (1992) and Wolff (1996), productivity of a firm should

be associated with its vintage or age distribution of capital stock. Under embodied

technical change, investment spikes should raise productivity.

Several empirical findings indicate a negative relationship between capital age and

productivity. Previous studies, such as Baily, Hulten and Campbell (1992) and Bahk

and Gort (1993), have found a negative correlation between capital age and productivity

at the plant level. Hulten (1992) using U.S. manufacturing sector data and Wolff (1996)

using six OECD countries data document that the average age of capital stock negatively

affects output growth. On the other hand, productivity may not improve immediately

after the adoption of new capital. Jensen, McGuckin and Stiroh (2001) finds that new

entrant plants display productivity levels below the industry averages. Sakellaris (2001)

and Huggett and Ospina (2004) also show that productivity growth falls after investment

spikes. The negative relationship between investment spikes and productivity predicts

that firms face sunk costs. However, vintage capital models can not explain the persistent

reduction in TFP shown in Table 1.

From a different perspective, models of learning by doing also link technology and

productivity. In Jovanovic and Nyarko (1996) and Klenow (1998), productivity increases

as firms learn about the given technology. Once the productivity gains on the given

technology are exhausted, firms can switch to a better technology. But a switch of

technologies temporarily reduces expertise because technical knowledge is highly specific

to particular production processes. The model of Klenow (1998) clearly states that

productivity initially falls when firms adopt new technologies, but gradually rises as the

firms acquire experience with the new technologies. Jensen, McGuckin and Stiroh (2001)

empirically show that surviving plants improve their relative standing in the productivity

distribution as they age. Power (1998) finds that productivity tends to monotonically

increase with plant age. The positive correlation between technical efficiency and the

time trend and the reduction in technical efficiency accompanying investment spikes in

table 1 are both consistent with predictions of learning models as well as the empirical

findings described above.

5 Conclusion

This paper has considered technical efficiency induced by large investment episodes. We

estimate the technical efficiency effects in a stochastic frontier production function. With
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firm-level data from the Japanese manufacturing sector, we find a persistent relationship

between investment spikes and production efficiency drops thereafter. After controlling

for a time trend, aging capital stock has a negative impact on production efficiency,

although the magnitudes differ by industry.

These findings are summarized as follows. First, reductions of machinery age at firms

significantly increase their productivity. The empirical results of this paper provide sup-

port for the hypothesis that machinery age is a significant source of technical efficiency.

The replacement of old with new machines exhibits a strong relationship with technical

efficiency. Second, drops in production after large investments and productivity growth

over time are both consistent with firm/plant dynamics models by Jovanovic and Nyarko

(1996) and Klenow (1998).
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