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1 Introduction

Measuring and controlling the risk of assets are important factors in portfolio management, together

with option pricing and value-at-risk analysis. In the finance literature, risk is usually indicated by

the variability of asset returns. Thus, estimating their covariance matrix plays a key role for deter-

mining the portfolio allocation, for example, using mean-variance portfolio optimization based on the

investment theory of Markowitz (1952). Using high-frequency financial data, nonparametric variance

and covariance measures have attracted the attention of financial econometricians. The measures are

called realized variance and covariance, which are constructed by summing outer-products of intraday

return data. They potentially provide very accurate estimates of the underlying quadratic variation and

covariation.

There are some earlier studies for evaluating the economic benefit of the realized covariance ap-

proach in the context of investment decisions. Fleming et al. (2003) consider that a risk-averse

investor uses conditional mean-variance analysis to allocate funds composed of three assets: S&P

500 futures, Treasury bond futures, and gold futures. They empirically show that the economic gains

yielded by rolling covariance matrix estimators, based on intraday returns, are economically large.

Bandi et al. (2008) and Pooter et al. (2008) examine the effect of the realized covariance estimators

that are constructed under optimal sampling frequency on optimized portfolios using three stocks and

78 stocks in S&P 100 index constituents, respectively.

While these papers examine the performance of small- or medium-scale portfolios, this paper

measures the economic benefit of large-scale minimum variance equity portfolio optimized using

the realized covariance approach. For the analysis of a large-scale portfolio, Chan et al. (1999)

construct a portfolio made up of 250 stocks randomly selected from domestic common stock issues

on the New York Stock Exchange and the American Stock Exchange. They show that the large-

scale portfolio optimization using a factor model with the monthly historical returns is helpful for

risk control. Clarke et al. (2006) construct a minimum-variance portfolio consisting of the 1,000

largest market capitalization U.S. stocks using Bayesian shrinkage estimators proposed in Ledoit and

Wolf (2003) with the past monthly and daily returns. Overall, there has been a shortage of empirical

evidence evaluating portfolio performance using the intraday returns and different risk optimization

methods. To our knowledge, there has been no research that applies the realized covariance approach

to the large-scale portfolio optimization. It is important to compare the realized covariance approach

with current monthly or daily return-based covariance matrix structuring methodology suited for the

large-scale portfolio optimization.

We construct large-scale realized covariance matrix estimators based on the past intraday returns

for 500 of the largest market capitalization JPN stocks and assess the out-of-sample performance of

the minimum-variance portfolios by comparing with portfolios based on Bayesian shrinkage estima-
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tors using the past monthly and daily returns. The empirical results report the statistics, including

annualized ex-post returns in excess of the risk-free rate, a standard deviation of the portfolio excess

returns, the return per unit of risk (Sharpe ratio), and the net excess return with transaction costs. In

addition, we estimate how much a risk-averse investor would be willing to pay to use the realized

covariance estimators based on the intraday returns.

The remainder of the paper is organized as follows. Section 2 describes the data and our methodol-

ogy, including the construction of the large-scale covariance matrix estimators, the minimum variance

methodology, and the performance measurement criteria. Empirical results are discussed in Section

3. Section 4 concludes.

2 Data and Methodology

The data set was obtained from the Nikkei NEEDS-TICK data and the Nikkei NEEDS Financial

Quest. The sample consists of intraday and daily returns from November 1999 to February 2007 and

monthly returns from November 1995 to February 2007. The out-of-sample period for an examination

of the portfolios is every month (76 months) from November 2000 to February 2007. Among the

Tokyo Stock Exchange (TSE) 1st section-listed stocks, we pick the 500 largest market capitalization

JPN stocks with no stock splits during the sample period.

2.1 Large-scale covariance matrix estimators

First, we define a monthly risk measure for periodt computed with intraday data that has higher

frequency than the forecasting horizon. The high-frequency data were obtained from the Nikkei

NEEDS-TICK data. For each dayτ , the total trading time on the TSE is 270 minutes, from 9:00 to

11:00 in the morning session and from 12:30 to 15:00 in the afternoon session. On the other hand,

we cannot obtain the high-frequency data from 15:00 to 9:00 (overnight) and from 11:00 to 12:30

(lunchtime).

Letp, h(ON), andh(L) denote the(N×1) vector logarithmic prices and time intervals for overnight

and lunchtime, whereN = 500 is the number of stocks. Trading sessions on the TSE are divided into

the time intervals of equal lengthh. Suppose that on dayτ , we have the vector of overnight returns,

rτ−1+h(ON) := pτ−1+h(ON) − pτ−1, returns in the morning session,rτ−1+h(ON)+ih := pτ−1+h(ON)+ih−
pτ−1+h(ON)+(i−1)h for i = 1, . . . , I, lunchtime returnsrτ−1+h(ON)+Ih+h(L) := pτ−1+h(ON)+Ih+h(L) −
pτ−1+h(ON)+Ih, and returns in the afternoon session,rτ−1+h(ON)+Ih+h(L)+jh := pτ−1+h(ON)+Ih+h(L)+jh

−pτ−1+h(ON)+Ih+h(L)+(j−1)h for j = 1, . . . , J , whereh(ON) +h(L) +(I +J)h = 1. Then, the realized
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covariance matrixVt,h in montht is defined as:

Vt,h =
∑
τ∈t

rτ−1+h(ON)r0τ−1+h(ON) +
∑
τ∈t

I∑
i=1

rτ−1+h(ON)+ihr
0
τ−1+h(ON)+ih (1)

+
∑
τ∈t

rτ−1+h(ON)+Ih+h(L)r0τ−1+h(ON)+Ih+h(L)

+
∑
τ∈t

J∑
j=1

rτ−1+h(ON)+Ih+h(L)+jhr
0
τ−1+h(ON)+Ih+h(L)+jh.

The realized covariance matrix estimator in (1) is based on the calendar time sampling, which is

a well-used scheme sampled at equidistantly spaced intervals with the length ofh over the trading

session. However, the raw intraday data are usually unevenly spaced and non-synchronous. In this

paper, the previous-tick interpolation method defined as the manipulation of taking the most recent

price is applied to obtain a homogeneous time series, which is an artifact constructed from the raw

intraday data. Although a linear interpolation exists (weighted average of the most recent price and

the immediate price) as the alternative interpolation method, Dacorogna et al. (2001) show that the

realized variance and covariance with the linear interpolation do not converge in probability to the

quadratic variance and covariance, and Barucci and Renó (2002) also show the bias by the linear

interpolation using Monte Carlo simulation.

The realized variance and covariance measures constructed in (1) have the potential to provide

very accurate estimates of the underlying quadratic variations and covariations. However, these mea-

sures have been shown to be sensitive to market microstructure effects that can be induced by various

market frictions such as the discreteness of price changes, bid-ask bounces, inter alia.1 When we esti-

mate the underlying quadratic variations and covariations of the stocks from high-frequency observa-

tions, it is necessary to use a sufficiently large sample size while we avoid the market microstructure

effects because the realized covariance estimator with finer high-frequency data may have larger bias

and variance. In our analysis, we calculate the realized covariance matrix based on five-minute returns

(I +J = 54) because realized variance and covariance plots for every sampling frequency showed the

estimates from under five minutes to thirty minutes were comparatively stable.2 In addition, the aver-

age of realized covariance matrices using intraday returns from the preceding six and twelve months

1For example, the growing literature on market microstructure provides important insights from early studies including
Roll (1984), who derives a simple estimator of the bid-ask spread based on the negative autocovariance of returns. Harris
(1990) examines the rounding effects emanating from the discreteness of transaction prices. Ubukata and Oya (2009)
analysis a dependence of the market microstructure effects.

2Recent literature on integrated variance and covariance estimation with market microstructure effects have been
developed by Zhou (1996), Zhang et al. (2005), Zhang (2006), Hansen and Lunde (2006), Voev and Lunde (2007), and
Barndorff-Nielsen et al. (2008), inter alia. Also, the optimal frequency based on the minimization of the mean squared
errors has been proposed by Bandi and Russell (2008).
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are constructed for the portfolio optimization as follows:

V
(6)
t,h =

1

6

5∑

k=0

Vt−k,h, V
(12)
t,h =

1

12

11∑

k=0

Vt−k,h. (2)

The simple average realized covariance matrix estimatorsV
(6)
t,h andV

(12)
t,h are input to the optimization

routine.

Second, we construct the covariance matrix using monthly and daily closing prices obtained from

the Nikkei NEEDS Financial Quest. The standard approach is, for example, to use the sample covari-

ance matrix estimators with the past five years of monthly returns or the past year of daily returns.

However, it is widely known that the approach for the large-scale optimized portfolio creates some

problems in which the sample covariance matrix may be singular (noninvertible) and estimation out-

liers can dominate the optimized portfolio. Ledoit and Wolf (2003, 2004) show that their shrinkage

estimators of the covariance matrix improve the portfolio performance over the sample covariance ma-

trix estimator. Therefore, we compute the Bayesian shrinkage covariance matrix proposed in Ledoit

and Wolf (2003). Letr = (r1, r2, . . . , rN)′ denote the(N ×K) matrix of the historical returns.K

represents60 months or about240 days for the use of the corresponding monthly and daily historical

data, respectively. Then the sample covariance matrix, which is not divided byK, is calculated by

V = rr′. The Bayesian shrinkage covariance matrix (denoteVBS) is defined as the weighted average

of the two-parameter prior covariance matrixVprior and the sample covariance matrixV, as follows:

VBS = λVprior + (1− λ)V, (3)

where a scalar shrinkage parameterλ bounded between zero and one is given by:

λ =
SUM[r.2r′.2]− SUM[V.2]/K

SUM[(V −Vprior).2]
, (4)

where.2 is the element-by-element squaring andSUM[ ] is the sum of the matrix elements. The

diagonal and off-diagonal elements in the prior covariance matrixVprior are the average value of the

diagonal elements and theN(N−1)/2 off-diagonal elements in the sample covariance matrix, respec-

tively. Finally, we divide the Bayesian shrinkage covariance matrixVBS by K and, if the calculation

is based on daily historical returns, the daily Bayesian shrinkage covariance matrix is multiplied by

the number of trading days per month. Thus, we input the Bayesian shrinkage covariance matrices

based on monthly and daily historical returns to the optimization routine.
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2.2 Minimum-variance portfolio

The portfolio optimization reduces to finding the asset weights that minimize the portfolio covolatility

while aiming for a target expected return or maximize the portfolio return while targeting a certain

covolatility. We conduct the different covolatility optimizations by constructing two scenarios of

minimum-variance portfolios. Each month, we solve the following minimization problem:

min
w

(
w′

t+1Σt+1wt+1

)
(5)

subject to :

Scenario 1 : wt+1 > 0 and w′
t+11 = 1,

Scenario 2 : w′
t+1µt+1 = µp, wt+1 > 0 and w′

t+11 = 1,

wherewt+1 = (w1, w2, . . . , wN)′ is the (N × 1) vector of portfolio weights,1 is an (N × 1) vector

of ones, andΣt+1 is the (N × N ) conditional covariance matrix. We use the estimator ofΣt+1 as

V
(6)
t,h , V

(12)
t,h , and the Bayesian shrinkage covariance estimators based on monthly and daily histor-

ical returns. For the constraints on the portfolio weights, the portfolio weights are required to be

nonnegative because short selling is not generally a common practice for most investors. The total

portfolio weight is assumed to be equal to one. In scenario 1, we construct the minimum-variance

portfolio that minimizes risk without an expected return because we consider purely the strategy that

the portfolio weights are determined by the estimators of the conditional covariance matrix. The sce-

nario is associated with the previous study of Clark et al. (2006), which also examined large-scale

minimum-variance equity portfolios that do not rely on any specific expected return. They show that

the minimum-variance portfolios based on the past monthly and daily returns give higher realized re-

turns and lower realized standard deviations than a market-capitalization weighted portfolio. We also

conduct scenario 2 where the minimum-variance portfolio is determined by minimizing covolatility

given a target expected return.µt+1 is set as the average monthly returns in the complete out-of-

sample period from November 2000 to February 2007 and the target expected returnµp is set to10%

(annualized).

2.3 Assessing portfolio performance

We assess the empirical out-of-sample performance of portfolios based on the different covariance

matrix estimators on several grounds. The performance of the portfolios is evaluated using the ex-

post realized portfolio returns over 76 months from November 2000 to February 2007. First, we

compare the return per unit of risk, that is, measure the corresponding Sharpe ratios given by:

SR =
r̄P − rf

σ̂rP

, (6)
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whererf is a risk-free rate and we use the unsecured one-month call rate to proxy the risk-free rate.

r̄P − rf represents the mean of the ex-post realized portfolio returns in excess of the risk-free rate.

σ̂rP
is the standard deviation of the realized excess returns. The Sharpe ratio is used to characterize

how well the realized return of the portfolio compensates the investor for the risk. A higher Sharpe

ratio implies that a portfolio’s risk-adjusted performance is better.

Second, we evaluate the economic benefit of the different covariance matrix estimators following

Fleming et al. (2001, 2003). On a utility-based approach to measure the value of the portfolio’s

performance gains, we assume a risk-averse investor with the following quadratic utility:

U(rPt+1) = W0

(
(1 + rf + rPt+1)− γ

2(1 + γ)
(1 + rf + rPt+1)

2
)
, (7)

whererPt+1 is the portfolio return andγ is the investor’s relative risk aversion.W0 is initial wealth

and is set equal to one for simplicity. LetrP1,t+1 andrP2,t+1 be the portfolio returns on the strategies

using the two different covariance matrix estimators. The maximum amount∆γ that the investor

would be willing to pay to switch from the first strategy to the second is then determined by:

T∑
t=1

U(rP1,t+1) =
T∑

t=1

U(rP2,t+1 −∆γ), (8)

whereT = 76 is the out-of-sample period for the portfolio performance. Comparing the realized

performance fees forV(6)
t,h andV

(12)
t,h over Bayesian shrinkage covariance estimators measures the

improvement due to the use of intraday data. We report the value of the switching fee∆γ as the

annualized percentage at the relative risk aversion parameters ofγ = 1 and10.

Third, we assess the different portfolio performances that incorporate transaction costs. The trans-

action costs play a nontrivial role for portfolio selections because the higher turnover implies that the

investor has to pay a higher cost by more active trading and, then, the net returns of the portfolio de-

crease. However, it is not generally easy to compute the total transaction cost, including stock trading

commissions, the bid–ask spread, and the account management fee, inter alia. Following Pooter et

al. (2008), we assume that transaction costs amount to the sum of absolute changes in the portfolio

weights multiplied by a fixed percentage costc as follows:

ct+1 = c

N∑
i=1

| wi,t+1 − wi,t |, (9)

wherect+1, intuitively, represents a cost to reallocate the portfolio at the point of rebalancing.c is

set to 2% and 4%, expressed in annualized percentage. Then, the net portfolio return is given by

rPt+1− rf − ct+1. We also report a portfolio turnover as the total amount of purchases and sales over
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the same month divided by the total net asset value of the portfolio.

3 Empirical Results

Table 1 summarizes statistics of minimum-variance portfolios optimized under the conditions in sce-

nario 1 (without expected return input). The panels A, B and C show the statistics where the level

of annualized transaction costsc take0%, 2% and4%, respectively. For each panel, the first row

contains the performance for a simple diversification strategy that involves no optimization; namely,

the 500 stocks value-weighted portfolio composed of the same stocks as the others. The 500 stocks

value-weighted portfolio might be regarded as the market portfolio because its realized returns are

highly correlated with those of the Tokyo stock price index (TOPIX), which is a stock market index

based on the total number of shares, tracking the TSE 1st section-listed stocks. The Sharpe ratio of

the market portfolio is the lowest of all due to the lowest mean return in excess of the risk-free rate

and the highest standard deviation of the portfolio excess returns. This result implies that to con-

duct optimized procedures is very helpful to the improvement of portfolio performance although the

value-weighted portfolio may be often considered as a passive benchmark portfolio.

For panel A in Table 1, we find that using two realized covariance matrix estimatorsV
(6)
t,h and

V
(12)
t,h yields higher Sharpe ratios of 0.270 and 0.259 than the Bayesian shrinkage covariance estima-

tors based on the past monthly and daily returns. This is because of the high reduction of the standard

deviation for the estimatorsV(6)
t,h andV

(12)
t,h . Figure 1 plots the cumulative portfolio returns over 76

months by the estimators with monthly, daily, and intraday returns. Although the three cumulative

portfolio returns tend to move similarly through the whole period, we can see that the starting cu-

mulative returns forV(6)
t,h have less volatility and their large rise and drop are relatively not seen so

much. In Table 1, the returns of the realized covariance matrix estimators have a lower correlation

with TOPIX and the tracking error takes a higher value than the Bayesian shrinkage covariance es-

timators. This means that the intraday returns-based strategy takes a more different investment style

from the value-weighted strategy than the monthly or daily returns-based strategies.

In addition, the turnover ofV(6)
t,h andV

(12)
t,h takes annualized 27.699% and 19.578% values that

are higher than those of the 500 stocks value-weighted portfolio and the portfolio using the Bayesian

shrinkage estimator based on the monthly returns. In order to evaluate the effect of the transaction

costs, on panels B and C in Table 1, we describe the statistics of minimum-variance portfolios when

the two levels of transaction cost (c = 2%, 4%) defined as (9) are imposed on every monthly rebalanc-

ing. Even in the cases ofc = 2% and4%, theV
(6)
t,h andV

(12)
t,h still yield higher Sharpe ratios and lower

standard deviations than the portfolio using the Bayesian shrinkage estimator based on the monthly

returns. The Sharpe ratios forV
(12)
t,h are 0.238 and 0.218, which exceed those forV

(6)
t,h althoughV(6)

t,h

earns the highest Sharpe ratio in the case without transaction cost, as in panel A. It is noted thatV
(12)
t,h
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Table 1: Performance of minimum-variance portfolios (scenario 1)

Annualized Std Dev Sharpe Correlation Turnover Tracking
Mean Ratio with TOPIX Error

Panel A:c = 0
500 stocks 2.502 49.315 0.051 0.984 2.851
value-weighted
Monthly 6.670 31.045 0.215 0.734 9.107 34.051
Daily 7.220 29.575 0.244 0.695 27.386 35.013
V

(6)
t,h 7.340 27.147 0.270 0.675 27.699 36.543

V
(12)
t,h 7.273 28.086 0.259 0.688 19.578 35.535

Panel B:c = 2
500 stocks 2.386 49.318 0.048
value-weighted
Monthly 6.274 31.038 0.202
Daily 6.485 29.636 0.219
V

(6)
t,h 6.427 27.089 0.237

V
(12)
t,h 6.692 28.067 0.238

Panel C:c = 4
500 stocks 2.270 49.322 0.046
value-weighted
Monthly 5.879 31.032 0.189
Daily 5.751 29.703 0.194
V

(6)
t,h 5.513 27.034 0.204

V
(12)
t,h 6.110 28.050 0.218

Note: We compute the realized returns yielded by the different strategies using the 500 stocks value-weighted
rate, using the Bayesian shrinkage estimators based on monthly and daily returns “Monthly” and “Daily” and
realized covariance matrix estimators based on the past six- and twelve-month intraday returns “V(6)

t,h ” and

“V(12)
t,h ”. The table reports the average annualized return in excess of the risk-free rate, annualized standard

deviation of the excess returns, Sharpe ratio, correlation with TOPIX, turnover for each strategy and tracking
error from the 500 stocks value-weighted portfolio. Panels A, B and C show the statistics where the levels of
transaction costc are0%, 2% and4%, respectively.
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Figure 1: Cumulative portfolio returns

is the realized covariance estimator using more historical intraday data thanV
(6)
t,h . The less effect of

the portfolio forV(12)
t,h on the transaction costs implies that the portfolio determined by the realized

covariance estimator with the longer past intraday returns would be characterized as the active port-

folio with a lower turnover. We think that, for the construction of the portfolio based on intraday data,

the investor can use the length of the past intraday returns according to their preference to degrees of

the activity of buying and selling.

Table 2 shows the annualized fees∆γ that the investor with relative risk aversion parameterγ = 1

and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and

daily returns to using the realized covariance matrix estimators based on the intraday returns. A risk-

averse investor pays the positive switching fees∆γ with γ = 1 and10. We also find that an investor

with high relative risk aversionγ = 10 would be willing to pay larger fees than an investor with

low relative risk aversionγ = 1. The increase of the fees fromγ = 1 to γ = 10 consistent with

the investor with high relative risk aversion is preferable to switching to the portfolios using realized

covariance matrix estimators that yield lower standard deviations. Therefore, the strategies of using

intraday returns also make more economic gains than those based on the monthly and daily returns.

So far, we have discussed the performance of the minimum-variance portfolios optimized under no

constraint for the target expected return in scenario 1. It is also important to consider the case where
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Table 2: The economic gains of strategies using intraday returns (scenario 1)
c = 0 c = 2 c = 4

∆γ=1 ∆γ=10 ∆γ=1 ∆γ=10 ∆γ=1 ∆γ=10

V
(6)
t,h vs monthly 1.863 12.734 1.355 11.998 0.846 11.264

vs daily 0.849 9.380 0.701 8.927 0.553 8.506
V

(12)
t,h vs monthly 1.526 10.898 1.340 10.439 1.153 9.988

vs daily 0.509 6.943 0.683 6.826 0.858 6.752

Note: The table represents the annualized fees∆γ that the investor with relative risk aversion parameterγ = 1
and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and daily returns
“Monthly” and “Daily” to using the realized covariance matrix estimators based on the past six- and twelve-
month intraday returns “V(6)

t,h ” and “V(12)
t,h ”.

Table 3: Performance of minimum-variance portfolios (scenario 2)
Annualized Std Dev Sharpe Turnover

Mean Ratio
Panel A:c = 0
Monthly 10.701 32.791 0.326 10.043
Daily 9.512 31.226 0.305 20.837
V

(6)
t,h 10.577 28.495 0.371 25.053

V
(12)
t,h 9.766 29.492 0.331 18.324

Panel B:c = 2
Monthly 10.217 33.000 0.310
Daily 8.798 31.447 0.280
V

(6)
t,h 9.741 28.606 0.341

V
(12)
t,h 9.190 29.665 0.310

Panel C:c = 4
Monthly 9.796 32.993 0.297
Daily 8.089 31.460 0.257
V

(6)
t,h 8.813 28.539 0.309

V
(12)
t,h 8.589 29.642 0.290

Note: The target expected return is set to annualized10%. We compute the realized returns yielded by the
different strategies using the Bayesian shrinkage estimators based on monthly and daily returns “Monthly” and
“Daily” and using the realized covariance matrix estimators based on the past six- and twelve-month intraday
returns “V(6)

t,h ” and “V(12)
t,h ”. The table reports the average annualized return in excess of the risk-free rate,

annualized standard deviation of the excess returns, Sharpe ratio, correlation with TOPIX and turnover for each
strategy. Panels A, B and C show the statistics where the levels of transaction costc are0%, 2% and4%,
respectively.
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Table 4: The economic gains of strategies using intraday returns (scenario 2)
c = 0 c = 2 c = 4

∆γ=1 ∆γ=10 ∆γ=1 ∆γ=10 ∆γ=1 ∆γ=10

V
(6)
t,h vs monthly 1.322 16.875 1.000 16.152 0.505 15.324

vs daily 1.952 13.426 1.862 12.833 1.660 12.160
V

(12)
t,h vs monthly 0.196 14.194 0.115 13.623 -0.065 13.052

vs daily 0.829 10.132 0.981 9.693 1.095 9.295

Note: The table represents the annualized fees∆γ that the investor with relative risk aversion parameterγ = 1
and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and daily returns
“Monthly” and “Daily” to using the realized covariance matrix estimators based on the past six- and twelve-
month intraday returns “V(6)

t,h ” and “V(12)
t,h ”.

the portfolio weight is determined by minimizing a variance under a given target expected return.

Table 3 reports the statistics of minimum-variance portfolios with annualized target expected return

equal to10% in scenario 2. For panel A, all the means of the annualized excess returns are around

the target expected return of10%, but the standard deviations of the portfolios based on the intraday

returns are lower than those using the monthly and daily returns. In consequence, we obtain the

higher Sharpe ratios of 0.371 and 0.331 forV
(6)
t,h andV

(12)
t,h . For panels B and C where the transaction

costs ofc = 2% and4% are imposed, the portfolio for the realized covariance estimatorV
(6)
t,h is the

most efficient in the sense of the trade-off return and risk, although the Sharp ratio for the Bayesian

shrinkage estimator based on the monthly returns exceeds that forV
(12)
t,h because of the lowest turnover

of the portfolio using the monthly returns. Table 4 also represents annualized performance fees∆γ

to switch from the monthly or daily returns for the Bayesian shrinkage covariance estimator to the

average realized covariance matrix with six and twelve months,V
(6)
t,h andV

(12)
t,h . In cases without

transaction costs and withc = 2%, all of the performance fees take positive values. For the transaction

cost ofc equal to4%, the fees from using the monthly or daily returns to usingV
(6)
t,h are unalterably

positive in cases withγ = 1 and10. By contrast, the performance fee forV
(12)
t,h versus the use of

monthly returns falls slightly below zero,−0.065, at the low relative risk aversionγ = 1, but the fee

at the high relative risk aversionγ = 10 considerably exceeds zero,13.052. The empirical results

show that the large-scale portfolio optimization based on the realized covariance matrix estimators

using the past intraday returns can yield substantial benefits in terms of risk reduction. The results

are also suggestive of the better performance of the large-scale portfolio constructed by the realized

covariance approach.
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4 Conclusion

The objective of this paper is to examine effects of the realized covariance matrix estimators based

on intraday returns on large-scale minimum-variance equity portfolio optimization. We empirically

assess out-of-sample performance of portfolios with different covariance matrix estimators: the real-

ized covariance matrix estimators and the Bayesian shrinkage estimators based on the past monthly

and daily returns. The main results are: (i) the realized covariance matrix estimators using the past

intraday returns yield a lower standard deviation of the large-scale portfolio returns than the Bayesian

shrinkage estimators based on the monthly and daily historical returns; (ii) gains to switching to strate-

gies using the realized covariance matrix estimators are higher for an investor with higher relative risk

aversion; and (iii) the better portfolio performance of the realized covariance approach implied by ex-

post returns in excess of the risk-free rate, the standard deviations of the excess returns, the return per

unit of risk (Sharpe ratio) and the switching fees seems to be robust to the level of transaction costs.
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