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Abstract 

Previous literature has studied the empirical characteristics of European Union Allowances (EUAs) and Certified 
Emissions Reductions (CERs) time series by using vector autoregression, impulse response function, and cointegration 
analysis (Chevallier (2010)). This paper extends the analysis by modelling the inter-relationships between EUAs and 
CERs in a multivariate GARCH econometric framework, so as to reflect the dynamics of the correlations between the 
variables overtime. Using the DCC MGARCH model by Engle and Sheppard (2001) and Engle (2002) on daily data 
from March 09, 2007 to January 26, 2010, we confirm the presence of strong ARCH and GARCH effects. Besides, 
we provide strong empirical evidence of time-varying correlations in the range of [0.01;0.90] between EUAs and 
CERs that have not been considered by previous studies. Thus, our study shows that the correlations between EUAs 
and CERs extracted from the DCC MGARCH model appear as a useful tool to comprehend the nature of the inter-
relationships between these two markets, and to reach optimal risk management, portfolio selection, and hedging as 
called by Engle (2009).
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1 Introduction

In his much acclaimed book Anticipating Correlations: A New Paradigm for Risk

Management, Engle (2009) states that we must ‘anticipate correlations’ if we want

to have optimal risk management, portfolio selection, and hedging1. Indeed, in the

present global financial world, it appears imperative both for asset management

and for risk analysis to gain a better understanding of the changing correlations

between a large number of assets and even between different financial markets.

In this paper, we focus on the inter-relationships between European Union Al-

lowances (EUAs) traded on the EU Emissions Trading Scheme (EU ETS), and

Certified Emissions Reductions (CERs) arising from the Clean Development Mech-

anism under the Kyoto Protocol. These emissions assets have first been studied by

Chevallier (2010) in a cointegrating and vector autoregressive framework, along

with impulse response function analysis. The author showed that EUAs and CERs

affect each other significantly through the vector autoregression model, and re-

act quite rapidly to shocks on each other through the impulse response function

analysis. Most importantly, both price series are found to be cointegrated, with

EUAs leading the price discovery process in the long-term through the vector error

correction mechanism.

We take this analysis one step further by modelling the daily returns of the two

historical futures price series from March 09, 2007 to January 26, 2010 in the Mul-

tivariate GARCH (MGARCH) framework with dynamic conditional correlations

(DCC) developed by Engle and Sheppard (2001) and Engle (2002). In our view,

it appears important to document empirically the correlations between EUAs and

CERs, since they represent the best proxies of the inter-relationships between re-

spectively the European carbon market (the most developed scheme to date, see

Ellerman et al. (2010)) and the ‘world’ price for carbon (as the CDM is the fastest

growing device under the Kyoto Protocol with respect to the size of other burgeon-

ing domestic and regional schemes, see World Bank (2010)). Therefore, this study

is of direct interest for academics and professionals in the field of carbon markets.

Our study shows that the DCC MGARCH model fits well the contemporaneous

relationships between the EUA ECX Futures and CER ECX Futures time series.

1Such forward-looking correlations are very important in risk management because the risk of a

portfolio depends not on what the correlations were in the past, but on what they will be in the

future. Similarly, portfolio choice depends on forecasts of asset dependence structure. Many aspects

of financial planning involve hedging one asset with a collection of others. The optimal hedge will

also depend upon the correlations and volatilities to be expected over the future holding period.
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We conclude that there is strong evidence of time-varying correlations among the

selected EUA and CER variables. Thus, the correlations between EUAs and CERs

extracted from the DCCMGARCHmodel appear as a useful tool to comprehend the

nature of the inter-relationships between these two markets, and to reach optimal

risk management, portfolio selection, and hedging as called by Engle (2009).

The remainder of the paper is organized as follows. Section 2 reviews the econo-

metric framework of the DCC MGARCH model. Section 3 presents the data used.

Section 4 contains the estimations results. Section 5 concludes.

2 Review of the Dynamic Conditional Correlation
Multivariate GARCH model

The main difficulty encountered with Multivariate GARCH modeling lies in find-

ing a suitable system that describes the dynamics of the conditional variance-

covariance matrix parsimoniously. Besides, the multiple GARCH equation needs

to satisfy the positive definiteness of the conditional variance-covariance matrix,

which is a numerically difficult problem. Finally, the number of parameters to

be estimated increases very rapidly as the dimension of the time-series increases,

which can take a very long time during the numerical implementation. To address

these questions, we detail below one parametric formulation for the structure of

the conditional covariance matrices (see Francq and Zakoian (2010) and Franses

and Van Dijk (2000) for a review and some alternative models).

In this paper, the class of multivariate GARCH models examined is based on the

decomposition of the conditional covariance matrix into conditional standard devi-

ations and correlations. In such Dynamic Conditional Correlation MGARCH mod-

els (Engle and Sheppard (2001), Engle (2002)), the conditional correlation matrix

is time-varying and the conditional covariance matrix may be written as follows:

Ht = DtPtDt (1)

where Dt = diag(h
1/2

1t , . . . , h
1/2

Nt ) and Pt = [ρij,t] is positive definite with ρii = 1, i =

1, . . . , N . Off-diagonal elements of the conditional covariance matrix are computed

as:
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[Ht]ij = h
1/2

it h
1/2

jt ρij , i 6= j (2)

where 1 ≤ i, j ≤ N . The conditional variances of rit processes are similar to uni-

variate GARCH(p,q) models:

ht = ω +

q∑

j=1

Ajr
2

t−j +

p∑

j=1

Bjht−j (3)

with ω a N×1 vector, Aj and Bj diagonal N×N matrices, and r2

t = rt⊙rt. When the

conditional correlation matrix P is positive definite and the elements of ω and the

diagonal elements of Aj and Bj positive, the conditional covariance Ht is positive

definite.

According to Engle (2002), we introduce the following dynamic matrix process:

Qt = (1 − a − b)S + aǫt−1ǫ
′

t−1
+ bQt−1 (4)

with a and b respectively positive and non-negative scalar parameters such that

a + b < 1, S the unconditional correlation matrix of the standardized errors ǫt,

and Q0 is positive definite. To produce valid correlation matrices, Qt needs to be

re-scaled as follows:

Pt = (I ⊙ Qt)
−1/2Qt(I ⊙ Qt)

−1/2 (5)

Having detailed the DCC MGARCH modeling, we present next the data used.

3 Data

We study the time-series of EUA and CER daily closing prices. Our study period

goes from March 09, 2007 to January 26, 2010 which corresponds to a sample of

737 observations. The source of the data is the European Climate Exchange (ECX).

Figure 1 presents the daily time series of EUA Futures traded in =C/ton of CO2
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on ECX. Visual inspection and standard unit root tests (ADF, PP, KPSS) suggest

taking first differences to obtain a stationary time series2. Because the time series

are non stationary, we consider the returns by taking first differences after taking

logarithms. The ECX Futures are therefore presented in logreturn transformation

in the bottom panel of Figure 1. Figure 2 presents the daily time series of CER

Futures, also traded in =C/ton of CO2 on ECX. The same comments as above apply

concerning the stationarity of the time series.

Descriptive statistics for the raw price series and logreturns may be found in Ta-

ble 1. According to the Jarque-Bera test statistic, the distributional properties of

the EUA and CER futures raw price series appear as non-normal. In logreturn

transformation, the carbon futures are negatively skewed and since the kurtosis

exceeds three, a leptokurtic distribution is indicated.

To sum up, none of the raw time-series under consideration may be approximated

by the normal distribution. Besides, EUAs and CERs are found to be integrated

of order 1 (I(1)). Therefore, both EUA and CER log-returns are considered in the

econometric analysis. In the next section, we present our estimation results.

4 Estimation results

This section contains the estimation results for our modeling strategy of EUAs

and CERs. We discuss first some issues concerning the estimation of the DCC

MGARCH model presented in Section 2, and second we present the results ob-

tained.

4.1 Estimation practicalities

In the DCC MGARCH model, positive definiteness of Ht in eq(1) is ensured if the

conditional correlation matrix Pt is positive definite at each point in time, in addi-

tion to having well-defined conditional variances hit,i=1,...,N . This leads to compu-

tationally demanding estimation procedures, as the correlation matrix has to be

inverted for each t during every iteration.

As shown by Chevallier (2010), when selecting the adequate number of lags for

vector-autoregressive modeling of EUAs and CERs, all criteria unambiguously

2See Chevallier (2010) for standard unit root test results applied to the time series of EUAs and

CERs. These results are not reported here to conserve space and may be obtained upon request to

the authors. This comment applies in the remainder of the paper.
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point out an optimal lag of order 1. We follow thoroughly this approach here and

choose the most parsimonious specification by setting m = 1 and n = 1 for the

DCC(m,n) MGARCH model.

The BHHH algorithm (Berndt et al. (1974)) is used to produce quasi maximum

likelihood parameter estimates and their corresponding asymptotic robust stan-

dard errors.

4.2 DCC MGARCH results

For the ease of presentation, we state here a simplified version3 of the DCC(m,n)

MGARCH model by Engle (2002) where it is set m = n = 1:

hi,t = ωi + αir
2

i,t−1
+ βihi,t−1 for i = 1, 2 (6)

Qt = (1 − α∗

1
− β∗

1
) Q + α∗

1
ǫt−1ǫ

′

t−1
+ β∗

1
Qt−1

Rt =Q̃−1

t QtQ̃
−1

t

(7)

with ǫt = D−1

t rt, ǫt ∼ N(0, Rt), Q̃t a diagonal matrix containing the square root of

the diagonal entries of Qt, and Qt the matrix of unconditional covariances. Eq(6)

is a standard univariate GARCH model, and eq(7) is referred to as a DCC(1,1)

model. We fit eq(6) and (7) to the time series of EUAs and CERs in logreturn

transformation.

The standardized residuals of the DCC(1,1) MGARCH for EUA Futures and CER

Futures logreturns are shown in Figure 3. It may be concluded that the residuals

of the DCC(1,1) MGARCH model satisfy the necessary white-noise properties. As

confirmed by the visual inspection of Figure 4, the autocorrelation functions of

residuals and squared residuals do not exhibit autocorrelation. Results from the

Ljung-Box-Pierce test confirm this first diagnostic: the p-values of the test are

equal to, respectively, 0.191 and 0.674 for EUA and CER residuals. We can also

look at the normal Q − Q plots4 of the standardized residuals in Figure 5. We

observe only tiny deviations from the normal distribution, as for the DCC model

3Useful comments from an anonymous referee are gratefully acknowledged for pointing out this

specification.
4Normal Q-Q plot stands for the quantiles of the standardized residuals plotted against the quantiles

of the normal distribution.
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the Q − Q plots for EUAs and CERs almost lie on a straight line.

DCC(1,1) MGARCH estimates are reported in Table 2. The DCC(1,1) MGARCH

model has 8 parameters, which are all statistically significant at the 1% level.

For both variables, we may remark that the level of the ARCH coefficient is quite

low. The ARCH coefficient being an indicator of how news are impacting the volatil-

ity, a low value for the ARCH coefficient indicates that the variance adjustment

following the arrival of new information is slow. In other words, we highlight that

on carbon markets the GARCH coefficient is dominating, which means that these

emissions markets exhibit high autocorrelation in the volatility process.

Next, the correlation structure of the DCC(1,1) MGARCH model has a clear inter-

pretation: there is a non-constant interaction of the two time-series with respect to

conditional correlation, and this correlation impacts current correlation with a lag

of 1. This interaction effect would be neglected if EUAs and CERs were modeled

in isolation, each with a univariate GARCH model.

Next, we reproduce Engle and Sheppard’s (2001) test for the presence of dynamic

correlation in the residuals of the DCC(1,1) MGARCH model5:

H0 :Rt = R ∀t ∈ T

Ha :vech(Rt) = vech(R) + β1vech(Rt−1) + β2vech(Rt−1) + . . . + βpvech(Rt−1)
(8)

The p value and χ2 statistic testing for the dynamic correlation between EUAs and

CERs are presented in the last two rows of Table 2. Under the null the constant

and all of the lagged parameters in the model should be zero. Thus, we reject the

null of a constant correlation in favor of a dynamic structure.

In Figure 6, we provide a visual representation of the dynamic correlations be-

tween EUAs and CERs estimated from the DCC(1,1) MGARCH model. The DCC

MGARCH model thus offers an accurate description of the dynamics of the corre-

lations between the two variables overtime. The values observed for ρEUA,CER are

comprised between 0.01 and 0.90. Significant peaks in the dynamics of ρEUA,CER

may be found during the period going from March 2007 to January 2010, which

may be related to institutional developments in the respective emissions markets

(see Mansanet et al. (2011) for a thorough analysis). Besides, it is worthy to re-

5The interested reader may refer to Engle and Sheppard’s (2001) paper for a detailed description of

the testing procedure.
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mark that both emissions assets seem to de-correlate at certain points in time.

This latter result shows that EUAs and CERs are not completely fungible to date

(mainly due to their respective geographical scope and to the limitation on the im-

port of CERs for compliance within the EU ETS). Compared to Figures 1 and 2,

Figure 6 therefore offers us another view of the inter-relationships between EUAs

and CERs.

5 Conclusion

During our study period, we document that the dynamic conditional correlations

are quite high between EUA ECX Futures and CER ECX Futures logreturns (com-

prised between 0.01 and 0.90). As pointed out by Chevallier (2010), EUAs and

CERs are subject to simultaneous price changes based on their respective funda-

mentals (supply of EUAs and import limit of CERs within the EU ETS, demand

based on growth forecasts, weather forecasts and other energy markets (see Al-

berola et al. (2008), Chevallier (2009) and Hintermann (2010) for more details)).

Therefore, the correlation between EUAs and CERs could be used by analysts and

industrial operators in order to track how these price series diverge or converge

with respect to each other, in a moving institutional context (the status of the

CDM post-2012 and their inclusion within the EU ETS during Phase III are still

unclear at the time of writing). Hence, it seems that the dynamic conditional cor-

relations extracted from the DCC MGARCH model could be used to reflect market

participants’ heterogeneous anticipations of the future evolution of the European

and CDM schemes.

Finally, let us note that sometimes the correlation between EUAs and CERs con-

verges to zero. This behavior suggests that the two time series decorrelate some-

times during our study period, maybe due to specific shocks on the EUA and CER

markets. The EUA market for instance was attacked by VAT frauds from Eastern

European countries towards the end of 2009 which obviously should not have any

impact on the CER market (see European Commission (2009) for more details on

this topic).
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Figure 1

Time series of EUA Futures daily closing prices in raw form (top) and logreturn

transformation (bottom) from March 09, 2007 to January 26, 2010

Source: European Climate Exchange
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Figure 2

Time series of CER Futures daily closing prices in raw form (top) and logreturn

transformation (bottom) from March 09, 2007 to January 26, 2010

Source: European Climate Exchange
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Figure 3

Standardized residuals of the DCC(1,1) MGARCH for EUA Futures (top) and

CER Futures (bottom) logreturns
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Figure 4

Autocorrelation function of residuals (left panel) and squared residuals (right

panel) with the DCC(1,1) MGARCH for EUA ECX Futures (top) and CER ECX

Futures (bottom) logreturns
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Figure 5

Normal Q-Q plots of the standardized residuals for the DCC(1,1) MGARCH

with EUA ECX Futures (top) and CER ECX Futures (bottom) logreturns

Note: Normal Q-Q plot stands for the quantiles of the standardized residuals plotted

against the quantiles of the normal distribution.
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Figure 6

Dynamic Conditional Correlations between EUA ECX Futures and CER ECX

Futures estimated with the DCC(1,1) MGARCH model
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EUAECXFUT EUAECXFUTRET CERECXFUT CERECXFUTRET

Mean 19.48989 -0.000207 14.84186 -6.36E-05

Median 20.10000 0.000000 14.68000 0.000000

Maximum 31.71000 0.113543 22.85000 0.112545

Minimum 8.430000 -0.093014 7.484615 -0.110409

Std. Dev. 5.222809 0.025489 3.035417 0.023438

Skewness 0.047457 -0.117416 0.257790 -0.372537

Kurtosis 1.813932 4.851319 2.504244 5.677438

Jarque-Bera (JB) 43.47578 106.7975 15.71028 236.8635

Probability JB 0.000000 0.000000 0.000388 0.000000

Obs. 737 736 737 736

Table 1

Descriptive statistics

Note: EUAECXFUT refers to the EUA Futures time series in raw form,
EUAECXFUTRET to the EUA Futures time series in logreturn transformation,
CERECXFUT to the CER Futures time series in raw form, CERECXFUTRET to the
CER Futures time series in logreturn transformation, Std. Dev. to standard deviation,
and Obs. to the number of observations.
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Parameter Estimate

GARCH parameters

ωEUA 0.0001***

(0.0001)

αEUA 0.1340***

(0.0002)

βEUA 0.8118***

(0.0005)

ωCER 0.0001***

(0.0001)

αCER 0.1590***

(0.0002)

βCER 0.8038***

(0.0003)

Correlation Parameters

α∗

1
0.0525***

(0.0004)

β∗

1
0.9442***

(0.0005)

Log − Lik. 3682.1393

ES p value 0.0027

ES χ2 stat 11.8259

Table 2

DCC(1,1) MGARCH estimates for EUA ECX Futures and CER ECX Futures

logreturns

Note: EUA refers to EUA ECX Futures logreturns, and EUA refers to EUA ECX

Futures logreturns. Robust standard errors in parentheses. *** indicates 1%

significance level. The number of observations is 736. ES p value and ES χ2 stat

are Engle and Sheppard’s (2001) dynamic correlation tests statistics for a

maximum lag of order 1.
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