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Abstract 

This article proposes semiparametric estimation of on-site count data models based on a series expansion approach of 
Gurmu, Rilstone and Stern (1999, Journal of Econometrics 88, 123-150), which is flexible and adaptable for a form of 
overdispersion as long as the exponential mean parameterization is given. We also provide the empirical illustration of 
demand for a recreation site. The result suggests that the existing parametric approaches will cause wrong statistical 
inference for the on-site count data.
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1. Introduction

Count data collected by on-site sampling are often employed in the analysis of demand
for a recreation site using travel cost methods, and there is a large literature, for instance,
Shaw (1988), Englin and Shonkwiler (1995), Loomis (2003), Martı́nez-Espiñeira and Amoako-
Tuffour (2008), and Nohara (2010). They, however, applied only parametric count regression
models including the Poisson and the negative binomial to the analysis of their on-site count
data. Therefore, if there occurs overdispersion which means the variance of the underlying
random variable exceeds the mean, or its misspecification, the standard errors are grossly un-
derestimated in the usual maximum likelihood estimation. This underestimation implies that
the t-statistics are over-inflated (see, e.g., Cameron and Trivedi, 1998, ch.3). Moreover, as
shown by Santos Silva (1997), unlike the results of Gourieroux et al. (1984), in the case of on-
site sampling the estimates of parameters of interest by the Poisson pseudo likelihood are no
longer consistent, even if the conditional mean is correctly specified. We can obtain the consis-
tent estimates only under the restrictive conditions where the correct specifications of the first
two conditional moments are given. These facts would cause wrong statistical inference for
on-site count data and lead to incorrect conclusions of empirical studies.
In order to avoid such defects in the parametric estimation, this article proposes more flexi-

ble estimation of on-site count data models based on a series expansion. This extends the semi-
parametric approach of Gurmu et al. (1999) to on-site sampling count data by use of Shaw’s
(1988) correction for its characteristic problems. The proposed semiparametric approach nests
the existing parametric ones such as the Poisson and negative binomial models in the case of
on-site sampling as a special case. It should be noted that the series expansion approach does
not cover underdispersed count data, as pointed out by Cameron and Johansson (1997, p.204).
However, this range seems to be sufficient from an empirical point of view, because it is well
known that on-site count data such as the number of trips is often observed with overdispersed
(see, e.g., Martı́nez-Espiñeira and Amoako-Tuffour, 2008, p.1322). We also provide the il-
lustrative application of the proposed approach to an analysis of demand for a recreation site.
The result reveals that the usefulness is statistically supported by various criteria for model
selection.

2. Semiparametric estimation of on-site models

In this section, we describe the semiparametric estimation of on-site count data models by
use of Gurmu et al.’s (1999) Laguerre series expansion approach. Suppose that a random vari-
able yi is a count data with mean parameter θi and xi is a vector of covariates with p linearly
independent variables including a constant. Then by the standard exponential mean parameter-
ization,

θi = exp(x′iβ), i = 1, · · · ,N, (1)

where β is a p×1 vector of coefficients. The parameterization (1) ensures the non-negativity of
θi and is also regarded as the generalized linear models with the log-link function. When yi has
the Poisson distribution, (1) is called the Poisson regression model. This is a basic parametric
model but too restrictive for modeling count data because of equality of the conditional mean
and variance, namely the equidispersion property of the Poisson distribution. As discussed by
Cameron and Trivedi (1998, p.96), for instance, it is well recognized that count data is usually
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overdispersed, which may be due to unobserved heterogeneity caused by misspecification of
the Poisson parametric models.
To remove the restrictive property of the Poisson model, we introduce an unobserved het-

erogeneity variable to the mean parameterization (1) as follows:

μi = exp(x′iβ + εi) = θiνi, i = 1, · · · ,N, (2)

where νi = exp(εi) and E(νi) = 1. Suppose that the distribution of yi is Poisson with the mean
parameter μi and the unobserved heterogeneity νi is independent of the covariates xi. Let g(νi)
denote the probability density function of νi. The conditional mixture density of yi given xi can
be written as

f (yi | xi) =
∫ exp(−μi)μyii
Γ(yi + 1)

· g(νi) dνi =
∫
exp(−θiνi)(θiνi)yi
Γ(yi + 1)

· g(νi) dνi,

which is called a mixed Poisson distribution (see, e.g., Cameron and Trivedi, 1998, pp.98-
99). This expression depends on the specification of g(νi) but is a natural generalization of the
Poisson regression models. For example, assuming that g(νi) is a gamma density, we obtain the
negative binomial as a mixed Poisson distribution, and then (2) is the negative binomial model.
Next, considering that the data are collected by on-site sampling, there are problems of

truncation at zero and oversampling or endogenous stratification as a special case of choice-
based sampling. Therefore, we shall employ the correction of Shaw (1988, pp.213-215), who
modified the probability density function to adjust these problems. An on-site mixed Poisson
distribution is given by

f s(yi | xi) = yi
E(yi | xi) · f (yi | xi) =

yi
θi
·
∫
exp(−θiνi)(θiνi)yi
Γ(yi + 1)

· g(νi) dνi

=
θ
(yi−1)
i

Γ(yi)
·
∫
ν
yi
i exp(−θiνi) · g(νi) dνi =:

θ
(yi−1)
i

Γ(yi)
· M(y)

ν (θi), (3)

where the second equality results from E(μi | θi) = θi because E(νi) = 1, and M(y)
ν (θi) is the

y-th order derivative of the moment generating function Mν(θi) with respect to νi. Since in
order to implement (3) it is necessary to explicitly approximate the unknown density g(νi), we
apply the Laguerre series expansion approach to M(y)

ν (θi) proposed by Gurmu et al. (1999). The
Laguerre polynomial approximation provides a flexible modeling of a mixed Poisson distribu-
tion, including the geometric and negative binomial models as well as the basic Poisson model.
The approach is semiparametric in the sense that we do not assume that g(νi) has a specific
parametric form but the degree of polynomial K employed in the infinite series expansion is
allowed to increase with the sample size (see Gurmu and Trivedi, 1996, p.472).
Following the derivation given in Gurmu et al. (1999, pp.128-130), by use of a squared

K-th degree Laguerre polynomial approximation to g(νi), we obtain

M∗(y)ν,K (θi) =
(
1 +
θi
λ

)−α (
λ + θi

)−yiΓ(α)
φN

K∑
j=0

K∑
k=0

j∑
l=0

k∑
m=0

η jηk(hjhk)1/2

×
(
j
l

)(
k
m

)
Γ(α + l + m + yi)
Γ(α + l)Γ(α + m)

(
−1 − θi

λ

)−(l+m)
, (4)
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as the K-th degree approximation to M(y)
ν (θi), where α > 0, η0 = 1,

hj :=
Γ( j + α)
Γ(α)Γ( j + 1)

, φN :=
K∑
j=0

η2j ,

and λ is given by

λ =
Γ(α)
φN

K∑
j=0

K∑
k=0

j∑
l=0

k∑
m=0

η jηk(hjhk)1/2
(
j
l

)(
k
m

)
(−1)−(l+m) Γ(α + l + m + 1)

Γ(α + l)Γ(α + m)
, (5)

owing to E(νi) = 1. Thus, given the degree of the polynomial K and replacing M(y)
ν (θi) with (4)

in the on-site mixed Poisson distribution, the log-likelihood function is conducted as follows:

logLN(β, α, η) =
N∑
i=1

{
(yi − 1) log θi − logΓ(yi) + logM∗(y)ν,K (θi)

}
, (6)

where η = (η1, · · · , ηK)′. We obtain the semiparametric estimators of the parameters (β, α, η)
by maximizing the log-likelihood function under the condition (5). The form of (6) comes
to the same as that of Gurmu et al. (1999) except a little modification by allowing for on-site
sampling, that is, to subtract 1 from all yi observations of the first two terms in (6). It is similar
to the basic Poisson model with on-site count data shown by Shaw (1988). On the other hand,
the Laguerre polynomial approximation to M(y)

ν (θi) is not affected at all even if on-site sampling
is employed. From these facts, we expect that the consistency of the above semiparametric
estimators will follow from the result of Gurmu et al. (1999), though its asymptotic normality
remains open as well as their original approach. The exponential mean parameterization (2)
with the mixed Poisson distribution (3) is regarded as a semiparametric model for on-site count
data. This modeling nests the Shaw’s (1988) on-site Poisson model, if α−1 = λ−1 → 0 and
η j = 0 for j ≥ 1, and the on-site negative binomial model considered and proposed by Englin
and Shonkwiler (1995) and Martı́nez-Espiñeira and Amoako-Tuffour (2008), if α = λ and
η j = 0 for j ≥ 1, as a special case, respectively. These nested structures make it possible to
construct the likelihood ratio statistics for model selection in the following empirical analysis.

3. An empirical illustration

This section provides the empirical comparison of the proposed semiparametric model with
the other existing parametric ones for on-site sampling by the analysis of real data. The data
employed in this section is obtained from Nohara (2010) and originally collected for his empir-
ical analysis of recreation benefits of trips to Hokkaido by using travel cost methods. Following
the modeling of Nohara (2010), the single demand function for the recreation site can be written
as

θi = exp
(
β0 + β1

(
pi
Ii

)
+ β2

(
ti
Ti

)
+ β3Qi

)
, (7)

where pi and ti are the travel cost to Hokkaido and its travel time, respectively, Ii is the income,
Ti is the available time except working hours, and Qi is the environmental quality of the site,
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Table 1: Estimates and t-statistics for Poisson, NB2 and SP2 (N = 446).

Poisson NB2 SP2

Variable Estimate t-statistic Estimate t-statistic Estimate t-statistic

const. 0.1675 0.684 -0.9365 -2.151∗ -0.3927 -1.219

p/I -5.2520 -3.339∗∗ -4.8718 -2.572∗∗ -4.1623 -2.289∗

t/T -4.3987 -0.022 13.963 0.055 140.41 0.557

Q 0.0012 3.441∗∗ 0.0012 2.305∗ 0.0004 0.779

α − − 1.936 4.220∗∗ 1.7721 5.723∗∗

η1 − − − − 0.5491 15.69∗∗

η2 − − − − 0.2110 31.46∗∗

Note 1: t-statistics for the SP2 estimates are calculated from the estimates of the asymptotic standard errors.
Note 2: * and ** indicate that the estimate is significantly different from zero at the 5% and 1% level.

Table 2: Log-likelihood and CAIC for Poisson, NB2 and SP.

Model Log-likelihood CAIC

Poisson -736.85 1495.0

NB2 -670.39 1369.2

SP1 -670.39 1376.3

SP2 -651.11 1344.8

SP3 -651.21 1352.1

SP4 -649.57 1357.9

SP5 -649.41 1362.7

with the sample size N = 446. For details see Nohara (2010). It is easily seen that the expres-
sion (7) is specified by the exponential mean parameterization (1). We estimate the parameters
by use of three on-site count data models: the Poisson, the negative binomial 2 (NB2) and the
semiparametric (SP) approaches. As suggested by Gurmu and Trivedi (1996) and Gurmu et al.
(1999), to select the degree of the Laguerre polynomial and also compare the performance of
various models, we employ the consistent Akaike information criterion (CAIC) proposed by
Bozdogan (1987). The criterion is defined as

CAIC = −2 logLN(β̂, α̂, η̂) + q (log(N) + 1),
where logLN(β̂, α̂, η̂) is the estimated log-likelihood and q is the number of free parameters.
CAIC is consistent, that is, correct selection of K, since the penalty term is monotonically
increasing function of the sample size N. In the following, all of the computations was carried
out in Ox (see Doornik, 2006).
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Table 3: Likelihood ratio statistics for model selection.
H1

H0 NB2 SP2

Poisson 132.92∗∗ 171.49∗∗

NB2 – 38.57∗∗

Note: ** represents the rejection of H0 at the 1% significance level.

Table 1 reports the estimates and the t-statistics for testing the null hypothesis that the
coefficient is zero. We select the polynomial degree K = 2 for the SP model among K =
{1, · · · , 5} based on CAIC, and their results are shown in Table 2 below with the estimated log-
likelihood. It should be noted that we employ the estimates of the asymptotic standard errors
based on the empirical Hessian of the log-likelihood function (6) to construct the t-statistics
for the SP model. Gurmu et al. (1999) computed the nonparametric bootstrapped standard
errors for their t-statistics, though in the on-site SP model, those of the Laguerre polynomial
coefficients seem to be unstable and unreliable from a practical point of view. As discussed
in Cameron and Trivedi (1998, p.361) or Gurmu et al. (1999, p.147), if the selected order K
is treated as correct, the statistics based on the empirical Hessian or the outer product of the
gradient estimator can be valid. Thus, we recommend the t-statistics based on the asymptotic
standard errors in the on-site sampling context. Since the SP with K = 2 (SP2) model nests
the Poisson and the NB2 models as referred in the previous section, the likelihood ratio (LR)
statistics for testing H0: the restricted model against H1: the unrestricted model are conducted
as a benchmark of model evaluation and reported in Table 3.
From the results of Table 2, we find that the estimated log-likelihood of the NB2 and SP

models are clearly larger and their CAIC are smaller than those of the Poisson model, respec-
tively. These values reflect the fact that there occurs overdispersion in the present data, as
shown by each of the estimates of α that are significantly different from zero at the 5% level in
Table 1. The LR statistics for H0: Poisson against H1: NB2 or SP2 in Table 3 reject the null at
the 1% significance level, so that the existence of overdispersion is also supported. The NB2
model is inadequate for the specification of overdispersion, because the Laguerre polynomial
coefficients η1 and η2 are significant at the 1% in Table 1, and moreover the SP2 model is said
to be superior to it in terms of goodness-of-fit measures by CAIC and the LR statistics in Ta-
bles 2 and 3. Comparing the Poisson or NB2 with the SP2 models in Table 1, the existence
or misspecification of overdispersion substantially affect the estimates and would lead some of
the t-statistics over-inflate. These inflations make the estimated coefficient of Q significant at
the 1% and 5% in the Poisson and NB2 models but not in the SP2 model. Since this obvi-
ously causes wrong statistical inference for on-site count data, it seems to be preferable to use
the semiparametric modeling in practice. The proposed semiparametric approach is flexible
and adaptable for a form of overdispersion as long as the mean parameterization is correctly
specified by (2).

4. Conclusions

This article has proposed the semiparametric approach to on-site count data models by use
of the Laguerre series expansion method of Gurmu et al. (1999). The proposed estimation
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is flexible and adaptable for an unknown form of overdispersion. The existing parametric
estimation of on-site count data such as the Poisson and negative binomial models are included
as a special case. In the empirical illustration, we have shown that the proposed semiparametric
model is statistically preferable to the above existing models in terms of CAIC and the LR
statistics.
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