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1. Introduction

In their seminal paper Granger and Newbold (1974) showed by simulation the consequences of
applying Ordinary Least Squares (OLS) to two independent random walks. Regressing one variable
yt on another xt , where yt and xt follow mutually independent random walks, results in a) inconsistent
estimate of the slope and b) even asymptotically incorrect inference. (As the usual t-ratio is divergent,
the true null hypothesis will be rejected more often than the stated nominal size of the t-test, and the
over-rejection problem gets worse as the sample size increases, see Phillips, 1986.) The two random
walks would seem to be related, as judged by standard criteria as the t-statistic and R2, where in fact
they are not. Granger and Newbold (1974) also coined the term “spurious regression” (borrowing
from Pearson, 1987 and Yule, 1987, 1986) and spurred a whole generation of research in econometrics
of unit roots and asymptotic theory specially designed to handle non-stationarity.

Here I take a simple and somewhat unconventional look at the “spurious regression” problem –
I analyse the issue from the (Generalised) Classical Regression Model (CRM) point of view. To
anticipate the discussion
1. the “spurious regression” problem is simply a problem of severe autocorrelation in the error process
2. severe autocorrelation is trivial to spot in any empirical application
3. there are straightforward remedies suggested by the CRM, involving transformations of the

structural equation that deliver an estimating equation that satisfies all the requirements of the CRM
4. I show by simulation that when these remedies are implemented, the “spurious regression” problem

does not arise – for the true generalised least squares estimator the t-statistics follow exactly the
Student’s t-distribution in any sample size, and the actually observed rejection rate of the correct
null hypothesis is equal to the nominal stated size of the test

5. for the feasible generalised least squares versions the performance is as good as the true generalised
least squares estimator for moderately large sample sizes (say 70 observations)

6. conversely, even when “spurious regression” is not present in the data generating process, however
autocorrelation is present, OLS inference fails quite spectacularly with observed rejection rates
many times larger than the nominal stated size of the test.

“Spurious regression” is neither necessary, nor sufficient condition for severe autocorrelation related
pathologies in OLS inference to occur. It is not clear how helpful it is to think of the issue as a “spurious
regression” problem and how much this mode of thinking helps us in finding a satisfactory remedy.

What is notable about the CRM suggested remedies to the problem, is that no reference is made
to asymptotic theory and to the time series properties of the variables involved (i.e., the remedies work
perfectly fine for the unit root autoregressive case). When the data generating processes for both yt
and xt are assumed to be known to have unit roots, the Generalised Least Squares (GLS) solution
amounts to what asymptotic theory suggests – apply first difference transformation to the data. More
interestingly, even when the true data generating process is not assumed to be known, the feasible
estimated versions of the transformations work fine for moderately large sample sizes, in the sense
of delivering standard correct inference, which is as efficient as the true GLS.

The “spurious regression” problem has cropped up in various contexts and for very diverse data
generating processes (for a recent survey see Ventosa-Santaularia, 2009). I am not able to cover all
these data generating processes here. I do extend slightly the original Granger and Newbold (1974)
set-up with which most practitioners and students of econometrics are well familiar to cover cases
where we regress an I(0) or I(1) dependent variable on a I(1) or I(0) or I(2) regressor.

This paper is closely related to a contemporary work by McCallum (2010). He shows by simulation
that no “spurious regression” problem occurs when (the suggested by the heavy autocorrelation in the
OLS residuals) Cochrane-Orcutt estimator is applied. Sun (2004) derived a convergent t-statistic for
“spurious regression” set-up. His t-ratio divides by a Heteroskedasticity and Autocorrelation Consistent
(HAC) estimate of the variance, where to take into account the heavy and not dying out autocorrelation
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one does not truncate the series, contrary to what is done in the conventional HAC variance estimate.
The common theme here is that “spurious regression” relationships are accompanied by easy to

spot severe autocorrelation in the residuals of the estimated by OLS equation. Estimation methods
taking account of the potential autocorrelation, be it through feasible GLS, another transformation
that eliminates the autocorrelation, or by fixing the covariance matrix as in Sun (2004), eliminates
the spuriously detected relationships.

This paper differs in placing emphasis on the fact that all this is to be expected once one looks at
the “spurious regression problem” from the Classical Regression Model point of view.

2. The Classical Regression Model and how “spurious regression” fits in it

Consider the following model

yt = β0 +β1xt +ut defined over t = 1,2, ..,T (1)

ut = ρut−1 + et , u0 = e0 (2)

xt = θxt−1 +wt , x0 = w0 (3)

and each wt is iid∼ (0,σ2
w) and is independent of each et∼ iidNormal(0,σ2

e ). (4)

Setting β0 = β1 = 0, ρ = 1, and θ = 1 we obtain as a special case the Granger and Newbold (1974)
classical example of “spurious regression” of two independent random walks.

Observe that eq. (4) imply that each ut is independent of each xt , which in turn implies the weaker
condition known as strict exogeneity in the CRM context

E(ut |x1,x2, ..,xT) = 0 for each t. (5)

Define y≡ [yT yT−1 ..y1]
′, X ≡ [[11, .., 1]′[xT xT−1 ..x1]

′], β ≡ [β0 β1]
′, and u≡ [uT uT−1 ..u1]

′. Then
eq. (1) can be written as y = Xβ +u and the OLS estimator is

β̂ = (X ′X)−1X ′y (6)

and eq. (5) can be written as E(u|X) = 0. Observe that eq. (1) and eq. (5) together imply that

E(β̂ |X) = E[(X ′X)−1X ′y|X ] = E[(X ′X)−1X ′(Xβ +u)|X ] = β +E(u|X) = β

Result 1: E(β̂ |X) = β and by the law of iterated expectations E β̂ = β holds.

One often hears both econometricians and practitioners alike reciting a version of the statement “When
you regress one random walk on another you obtain a spurious regression, a regression that does not
make any sense.” As Result 1 shows, applying OLS results in estimates that make perfect sense in
one respect – they are unbiased for the true parameter value.

Conditional on X the error term in eq. (1) follows an autoregression and so it violates the assumption
of spherical disturbance in the CRM

E(uu′|X) 6= σuI.

In particular when ρ = 1 the autocorrelation in ut does not die out. The solution when ρ is known
is to transform the model so that the new error term satisfies the CRM assumptions.

To that end define ỹt = y−ρyt−1, x̃t = xt−ρxt−1 and et = ut−ρut−1. Therefore we observe that
the quasidifferenced model

ỹ = X̃β + e (7)
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satisfies all the CRM assumptions as

E(ee′|X̃) = σeI and e|X̃ ∼ Normal(0,σeI).2 (8)

Therefore applying OLS on eq. (7) results in the best unbiased estimator known as the generalised
least squares estimator

β̃ = (X̃ ′X̃)−1X̃ ′ỹ. (9)

Result 2: When ρ is known the generalised least squares estimator β̃ in eq. (9) is efficient
and unbiased for the population parameter β . Moreover the associated with the slope
parameter t-ratio is exactly Student’s t-distributed in any sample size.3

Result 3: When it is known that ρ = 1 and θ = 1, the CRM recommendation is the same
as the one coming from asymptotic stationarity considerations – take first differences
of the data and estimate the model in differences.

In practical applications the exact value of ρ will rarely be known, so we have two major ways of
implementing the above idea. Following Cochrane and Orcutt (1949) we can apply the feasible
generalised least squares procedure. In the first step we estimate by OLS the original (untrasformed)
model eq. (1) and from an auxiliary regression of the residual on the lagged residual we compute ρ̂ ,
the OLS estimator of ρ . In the second step we apply OLS on the quasi-differenced data ỹ = yt− ρ̂yt−1,
x̃ = xt− ρ̂xt−1. Alternatively we can estimate both ρ and β in one step in the following regression

yt = β0(1−ρ)+β1xt +ρyt−1 +β1(−ρ)xt−1 + et (10)

where this equation results from shifting all variables multiplied by unknown parameters in eq. (7)
to the right hand side (Durbin, 1970).

In the simulations that follow I study the performance of five estimators
1. the OLS estimator on data in levels
2. the generalised least squares estimator, i.e., OLS on quasidifferenced data using the correct

population ρ

3. the OLS estimator on first differenced data
4. the Cochrane and Orcutt (1949) feasible generalised least squares
5. the one step estimator of β in eq. (10) that results from including one lag of the dependent variable

and the regressor.
In the process I vary the autoregressive parameter of the ut series (ρ = 1, 0.8, 0.6), and the autore-
gressive parameter of the xt series (θ = 1, 0.8). The case where ρ = 1 and θ = 1 corresponds to the
original Granger and Newbold (1974) “spurious regression” case.

3. Simulation

I generate 30,000 replications from the model

yt = β0 +β1xt +ut , [β0 β1] = [00]

ut = ρut−1 + et , u0 = e0, ρ = [1, 0.8, 0.6]

2Under strict exogeneity, conditioning on X̃ is the same as conditioning on X – as the former is a linear transformation
of the latter, the two information sets contain the same information.

3Proofs of these facts can be found in any textbook on econometrics, e.g., Hayashi (2000, Chapter 1).
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xt = θxt−1 +wt , x0 = w0, θ = [1, 0.8]

and each wt∼ iidNormal(0,1) is independent of each et∼ iidNormal(0,1)

for sample sizes of T = [15, 30, 70, 100, 200, 500, 1000, 9000].

For each replication round I generate 1000+T observations and discard the first 1000, using only
the last T observations for estimation.

3.1 Means for the estimators and t-statistic rejection rates for the true null hypothesis

Each entry in Table I and Table II that follow contains the mean of a quantity computed over the 30,000
replication rounds. The mean of the estimate is followed by the mean of an indicator variable taking
the value of 1 if the t-statistic associated with the given estimate and with the (true) null hypothesis Ho:
β1 = 0 exceeds in absolute value the appropriate critical value for Student’s t random variable. In other
words we have a column of the means of the estimates followed by the rejection rate under the null
hypothesis. The test of the null hypothesis is always carried out at the 5% significance level. Therefore,

1. β̂OLS is the OLS estimator on levels data, i.e., the slope estimated from a regression of the form
yt = a+bxt + error, and the indicator [|t

β̂OLS
|> tc] takes the value of 1 if the absolute value of the

t-statistic associated with the null hypothesis that b is 0 exceeds the appropriate critical value from
the Student’s t distribution, and takes the value of 0 otherwise4

2. β̃GLS is the generalised least squares estimator (i.e., OLS on quasidifferenced data using the
correct population ρ , i.e., the slope estimated from a regression of the form (yt − ρyt−1) =
a+b(xt−ρxt−1)+ error, and the indicator [|t

β̃GLS
|> tc] takes the value of 1 if the absolute value

of the t-statistic associated with the null hypothesis that b is 0 exceeds the appropriate critical value
from the Student’s t distribution

3. β̂DOLS is the OLS estimator on first differenced data, i.e., the slope estimated from a regression of
the form (yt − yt−1) = a+b(xt − xt−1)+ error and [|t

β̂DOLS
| > tc] is the associated indicator for

the null hypothesis that b = 0 rejection
4. β̂CO is the Cochrane and Orcutt (1949) feasible generalised least squares, i.e., the slope estimated

from a regression of the form (yt − ρ̂yt−1) = a+ b(xt − ρ̂xt−1)+ error and [|t
β̂CO
| > tc] is the

associated indicator for the null hypothesis that b = 0 rejection
5. β̂OS is the one step estimator of β1 in eq. (10) that results from including one lag of the depen-

dent variable and the regressor, i.e., the first slope parameter estimated from a regression of the
form yt = a+bxt + ryt−1 + cxt−1 + error and [|t

β̂OS
|> tc] is the associated b = 0 null hypothesis

rejection indicator.
In Table I and Table II below all five estimators, including the OLS estimator are unbiased. Hence

statements of the sort that OLS in levels in the spurious regression model delivers results that “do
not make any sense” are unnecessary and incorrect over-generalisations.

3.1.1 Means for the estimators and t-statistic rejection rates for the true null hypothesis when xt is I(1)

Looking through the entries of the Table I, we observe the following.
1. The OLS estimator on levels results in extremely misleading inference whether or not we have

“spurious regression.”5

4The Iverson bracket [•], named after Kenneth E. Iverson, is used to denote a number that takes the value of 1 if
the condition in square brackets is true, and takes the value of 0 otherwise.

5The tests of the true null hypothesis from OLS on levels are grossly oversized even when the true ρ = 0.6 – very far
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Table I: The parameter ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set to
1. To conserve space, results for selected sample sizes of T = [70, 200, 500, 1000] observations are
reported in the table.

β̂OLS β̃GLS β̂DOLS β̂CO β̂OS

T [|t
β̂OLS
|> tc] [|t

β̃GLS
|> tc] [|t

β̂DOLS
|> tc] [|t

β̂CO
|> tc] [|t

β̂OS
|> tc]

Means of the statistics for ρ = 1
70 -0.0004 0.7199 -0.0018 0.0511 -0.0018 0.0511 -0.0019 0.0928 -0.0019 0.0560
200 -0.0021 0.8291 0.0005 0.0507 0.0005 0.0507 0.0003 0.0640 0.0005 0.0505
500 -0.0020 0.8936 0.0001 0.0501 0.0001 0.0501 0.0000 0.0555 0.0001 0.0509
1000 -0.0007 0.9230 0.0004 0.0518 0.0004 0.0518 0.0004 0.0557 0.0004 0.0520

Means of the statistics for ρ = 0.8
70 0.0009 0.4615 0.0002 0.0496 -0.0001 0.0482 0.0001 0.0953 -0.0001 0.0505
200 0.0003 0.4959 0.0002 0.0508 -0.0002 0.0490 0.0002 0.0726 -0.0000 0.0493
500 -0.0001 0.5108 -0.0000 0.0499 0.0001 0.0481 0.0000 0.0629 0.0001 0.0496
1000 0.0001 0.5049 0.0000 0.0476 0.0000 0.0527 0.0000 0.0551 0.0001 0.0527

Means of the statistics for ρ = 0.6
70 -0.0006 0.2979 -0.0003 0.0491 0.0004 0.0512 -0.0004 0.0836 0.0001 0.0527
200 -0.0002 0.3162 -0.0002 0.0492 0.0005 0.0487 -0.0001 0.0627 0.0004 0.0515
500 0.0000 0.3227 0.0000 0.0480 -0.0003 0.0508 0.0000 0.0544 -0.0002 0.0511
1000 -0.0001 0.3294 -0.0001 0.0517 -0.0001 0.0475 -0.0001 0.0542 -0.0001 0.0486

2. The true generalised least squares estimator delivers correctly sized t-test for the true null hypothesis
– the observed rejection rate under the null hypothesis is equal to the nominal stated size of the
test, and this is so for any sample size.

3. When we incorrectly impose ρ = 1 by first differencing the data, the estimator on first differences
is still unbiased and delivers correctly sized tests even when ρ = 0.8 or ρ = 0.6.

4. The Cochrane-Orcutt feasible GLS and the one step estimator in eq. (10) perform reasonably well
for moderately large sample sizes and any values of ρ .

5. The Cochrane-Orcutt estimator does exhibit size distortions for small sample sizes of 70 observa-
tions or less. Note however that the size distortion is present for any ρ , whether we have “‘spurious
regression” or not.

3.1.2 Means for the estimators and t-statistic rejection rates for the true null hypothesis when xt is I(0)

Looking through the entries of the Table II, we draw conclusions very similar to the ones coming
from our inspection of Table I. OLS is misleading, the true GLS delivers correctly sized t-statistics
for any sample size, and incorrectly first differencing the variables does not lead to any harm in terms
of test size or bias. The one step estimator in eq. (10) exhibits negligible size distortion, and only so
for very small sample sizes. (E.g., not reported in the table, but the rejection rate is 6.56% at nominal
stated size of the test of 5% when the sample size is 15 observations.) The Cochrane-Orcutt feasible
GLS exhibits non-negligible size distortions for very small sample sizes of 15 or 30 observations, but
achieves correct size somewhat faster than in the simulation design of Table I, and the size distortion
for very small sample sizes of 15 or 30 is somewhat smaller in the simulation design of Table II (not

away from a unit root in the yt series! Hence it is doubtful how useful is to think of spurious regression as a non-stationarity
phenomenon. Seems more useful to think of it as something that arises whenever heavy autocorrelation in the residual
is present.
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Table II: The parameter ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set
to 0.8. To conserve space, results for selected sample sizes of T = [70, 200, 500, 1000] observations
are reported in the table.

β̂OLS β̃GLS β̂DOLS β̂CO β̂OS

T [|t
β̂OLS
|> tc] [|t

β̃GLS
|> tc] [|t

β̂DOLS
|> tc] [|t

β̂CO
|> tc] [|t

β̂OS
|> tc]

Means of the statistics for ρ = 1
70 -0.0009 0.4662 0.0003 0.0499 0.0003 0.0499 0.0002 0.0622 -0.0002 0.0520
200 0.0087 0.4940 0.0003 0.0513 0.0003 0.0513 0.0003 0.0492 0.0005 0.0510
500 -0.0041 0.5074 -0.0006 0.0515 -0.0006 0.0515 -0.0006 0.0493 -0.0006 0.0492
1000 -0.0015 0.5070 -0.0003 0.0510 -0.0003 0.0510 -0.0003 0.0506 -0.0004 0.0496

Means of the statistics for ρ = 0.8
70 -0.0018 0.3371 -0.0006 0.0499 -0.0004 0.0565 -0.0003 0.0689 -0.0003 0.0522
200 0.0007 0.3489 -0.0000 0.0494 -0.0001 0.0542 0.0000 0.0524 0.0000 0.0491
500 -0.0002 0.3535 -0.0006 0.0484 -0.0007 0.0544 -0.0006 0.0494 -0.0006 0.0481
1000 -0.0000 0.3538 0.0003 0.0491 0.0003 0.0552 0.0002 0.0501 0.0002 0.0486

Means of the statistics for ρ = 0.6
70 0.0000 0.2314 0.0003 0.0507 0.0005 0.0590 0.0002 0.0709 0.0005 0.0526
200 -0.0007 0.2486 -0.0005 0.0497 -0.0003 0.0576 -0.0004 0.0562 -0.0002 0.0474
500 -0.0002 0.2391 0.0002 0.0499 0.0005 0.0611 0.0002 0.0518 0.0003 0.0518
1000 0.0000 0.2442 0.0000 0.0493 0.0001 0.0598 0.0001 0.0509 0.0001 0.0495

reported in the tables but found in the full set of simulations). The Cochrane-Orcutt feasible GLS
achieves correct size at about 70 to 100 observations.

3.2 Efficiency of various estimators

Each odd column in Table III and Table IV below contains the standard deviations of the estimators com-
puted over the 30,000 replication runs, i.e., the true standard errors of the estimators. Each even column
contains the skewness of the sampling distribution of the estimators, and they are all roughly symmetric.

3.2.1 Efficiency of various estimators when xt is I(1)

The following remarks can be made regarding efficiency of the five estimators.

1. As it is well known, OLS on levels β̂OLS in the “spurious regression” case with ρ = 1 is not
consistent, and the standard deviation of its sampling distribution does not go to zero as the
sample size increases. We observe this in the first column and first panel above. All the other four
estimators are consistent.

2. More interestingly, even in the “spurious regression” case with ρ = 1 the two feasible estimators that
do not assume that ρ is known and estimate it from the data (β̂CO and β̂OS) are roughly as efficient as
the true generalised least squares estimators for moderately large sample sizes of 70 or more obser-
vations. Thus, an econometrician in the year of 1950 who had never heard of “spurious regression”
and unit root asymptotics, but had read Cochrane and Orcutt (1949) and was aware of the dangers of
serial correlation in the error term, and had applied the suggested remedy, would have done just fine.

3. Looking in the second (ρ = 0.8) and the third (ρ = 0.6) panels, we see that always differencing
the data is not such a good idea. The Cochrane-Orcutt feasible GLS has smaller standard errors
compared the standard errors of the (mis-specified) OLS on first differenced data. For example when
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Table III: The parameter ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set
to 1. To conserve space, results for selected sample sizes of T = [70, 200, 500, 1000] observation
are reported in the table.

se β̂OLS se β̃GLS se β̂DOLS se β̂CO se β̂OS

T skew β̂OLS skew β̃GLS skew β̂DOLS skew β̂CO skew β̂OS

Standard Deviation and Skewness of the sampling distribution for ρ = 1
70 0.6265 0.0065 0.1226 -0.0154 0.1226 -0.0154 0.1346 -0.0513 0.1267 -0.0184
200 0.6222 -0.0312 0.0714 -0.0107 0.0714 -0.0107 0.0740 -0.0196 0.0723 -0.0051
500 0.6268 0.0150 0.0449 -0.0081 0.0449 -0.0081 0.0456 -0.0117 0.0451 -0.0117
1000 0.6229 -0.0067 0.0318 -0.0256 0.0318 -0.0256 0.0321 -0.0294 0.0319 -0.0286

Standard Deviation and Skewness of the sampling distribution for ρ = 0.8
70 0.1783 -0.0190 0.1116 0.0259 0.1287 0.0260 0.1139 0.0083 0.1258 0.0151
200 0.0741 0.0163 0.0537 0.0049 0.0751 0.0259 0.0537 0.0072 0.0718 0.0217
500 0.0316 -0.0289 0.0262 -0.0036 0.0473 0.0262 0.0261 -0.0042 0.0451 0.0165
1000 0.0159 0.0333 0.0142 -0.0192 0.0337 0.0024 0.0142 -0.0195 0.0320 0.0055

Standard Deviation and Skewness of the sampling distribution for ρ = 0.6
70 0.1031 0.0120 0.0891 0.0285 0.1382 0.0236 0.0889 0.0176 0.1267 0.0165
200 0.0390 -0.0307 0.0359 -0.0179 0.0796 -0.0006 0.0358 -0.0150 0.0721 -0.0068
500 0.0160 0.0284 0.0153 0.0628 0.0502 -0.0053 0.0153 0.0580 0.0451 0.0054
1000 0.0082 -0.0314 0.0080 -0.0351 0.0352 -0.0167 0.0080 -0.0410 0.0315 -0.0138

ρ = 0.6 the standard error of the Cochrane-Orcutt estimator is less than half of the standard error
of the mis-specified first differenced OLS, and this is so even for moderately large sample sizes.6

4. It should be pointed out however that the one step feasible estimator in eq. (10) has comparable
standard errors to the mis-specified first differenced OLS.

3.2.2 Efficiency of various estimators when xt is I(0)

The following remarks can be made regarding efficiency of the five estimators.

1. OLS on levels β̂OLS when ρ = 1 (yt is I(1)) is not consistent, even when xt is I(0), but heavily
autocorrelated (θ = 0.8). The standard deviation of its sampling distribution does not go to zero
as the sample size increases. We observe this in the first column and first panel above. All the
other four estimators are consistent.

2. The two feasible estimators that do not assume that ρ is known and estimate it from the data (β̂CO

and β̂OS) are roughly as efficient as the true generalised least squares estimators for moderately
large sample sizes of 70 or more observations.

3. The first differenced OLS estimator is always mis-specified here, if we think of first differencing
as something that we should apply to I(1) variables to achieve stationarity. Even if ρ = 1, still
θ = 0.8 so first differencing both the regressor and the regressand does not match the true data
generating process. (It does coincide with the true GLS when ρ = 1.) We see from the table that
the first differenced OLS is almost as efficient as the true GLS even for ρ = 0.8 and for ρ = 0.6.

6Every econometrician and practitioner would in principle agree that “always differencing the data” is a bad idea.
However this is what we all do effectively nowadays – we pretest the null hypothesis of a unit root, the tests in this class
are known to have notoriously low power, and then when we cannot reject the unit root null hypothesis , we difference
the data. I believe this questionable practice is to be blamed on the exuberant fear of running a “spurious regression”
and obtaining “results that do not make any sense.”
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Table IV: The parameter ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set
to 0.8. To conserve space, results for selected sample sizes of T = [70, 200, 500, 1000] observations
are reported in the table.

se β̂OLS se β̃GLS se β̂DOLS se β̂CO se β̂OS

T skew β̂OLS skew β̃GLS skew β̂DOLS skew β̂CO skew β̂OS

Standard Deviation and Skewness of the sampling distribution for ρ = 1
70 0.6852 0.0002 0.1152 -0.0120 0.1152 -0.0120 0.1297 -0.0686 0.1235 -0.0062
200 0.7137 0.0284 0.0679 -0.0193 0.0679 -0.0193 0.0686 -0.0205 0.0718 -0.0187
500 0.7322 -0.0071 0.0426 0.0076 0.0426 0.0076 0.0427 0.0072 0.0448 -0.0035
1000 0.7256 -0.0451 0.0301 0.0047 0.0301 0.0047 0.0301 0.0060 0.0317 0.0068

Standard Deviation and Skewness of the sampling distribution for ρ = 0.8
70 0.2492 -0.0066 0.1221 -0.0040 0.1246 -0.0045 0.1291 -0.0083 0.1246 -0.0028
200 0.1489 -0.0097 0.0710 0.0150 0.0729 0.0096 0.0720 0.0139 0.0715 0.0134
500 0.0954 0.0099 0.0447 -0.0261 0.0459 -0.0255 0.0449 -0.0280 0.0448 -0.0265
1000 0.0673 0.0001 0.0316 0.0182 0.0325 0.0085 0.0316 0.0161 0.0316 0.0163

Standard Deviation and Skewness of the sampling distribution for ρ = 0.6
70 0.1587 -0.0100 0.1185 -0.0168 0.1337 -0.0070 0.1229 -0.0176 0.1246 -0.0078
200 0.0918 -0.0092 0.0680 -0.0195 0.0780 0.0017 0.0689 -0.0230 0.0714 -0.0064
500 0.0568 -0.0257 0.0429 -0.0184 0.0495 -0.0059 0.0430 -0.0186 0.0451 -0.0143
1000 0.0400 0.0096 0.0300 0.0119 0.0350 0.0050 0.0301 0.0127 0.0317 0.0069

4. Discussion and conclusion

Let us contrast now the implications of the CRM above with the current econometric practice. The
current state of affairs is that practitioner are taught to be very wary of “spurious regression” results
arising from regressions involving nonstationary variables. Therefore practitioners pretest the null
hypothesis of a unit root in the original series y and X and if they are not able to reject the unit root null
hypothesis they routinely difference the data and carry on by regression analysis in differences. The
results above stand in stark contrast, we see that what we should be wary of is heavy autocorrelation
in the residual. For example, the second and third panels of Table I are regressions of I(0) variable
on I(1) variable and the t-statistic of the OLS estimator is divergent, it rejects the true null more and
more often as the sample size increases. The second and third panels of Table II are regressions of
I(0) variable on I(0) variable and the t-statistic of the OLS estimator is still divergent.

The implied empirical strategy suggested by our analysis is the following (I disregard the unlikely
case that the researcher knows for sure that the data has a unit root):
1. Estimate the structural equation in levels, i.e., apply OLS to eq. (1). Determine whether there is

autocorrelation in the residuals by a Durbin-Watson, Durbin, Breusch-Godfrey or any other appro-
priate7 test (Durbin and Watson, 1950; Durbin, 1970; Wooldridge, 1991). Alternatively, just eyeball
a plot of the autocorrelation function of the residual with confidence bands – the heavy and per-
sistent autocorrelation arising in “spurious regression” cases is very obvious and hard to miss. (See
Appendix A for a demonstration that one simply cannot miss the point that there is autocorrelation in
the error process, not only in the ρ = 1 “spurious regression” case, but also when ρ is as low as 0.6.)

2. If autocorrelation in the OLS residual is detected, proceed directly with a method geared toward
rendering the estimating equation complying with the CRM assumption, e.g., feasible GLS or eq.
(10). In effect let the data determine the value of ρ that is needed.

7In the context of “spurious regression” the Durbin-Watson test is appropriate because strict exogeneity holds.
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Alternatively, if one likes pretesting, one can reverse the current practice
1. Pretest the null hypothesis of stationarity in the original data series in levels, say with KPSS test

(Kwiatkowski, Phillips, Schmidt and Shin, 1992).
2. If the test does not reject the null hypothesis of stationarity proceed with transforming the data

in CRM form, or simply use HAC covariance estimate.
3. Only if one can reject the null hypothesis of stationarity, one should proceed with first differencing

the data and estimating the structural equation in first differences.
As a matter of language, the simulation results here suggest that we should dispense altogether with the
“spurious regression” terminology as it is not useful as all. For one thing, when one has substantial auto-
correlation in the error process, but no “spurious regression” (e.g., first columns in Table I and Table II,
ρ = 0.6 or ρ = 0.8) the OLS on levels delivers t-test with actual rejection rate of the true null hypothe-
sis from 20% to 50% when the stated nominal level is 5%, which is unacceptable, and the problem gets
worse as the sample size increases, i.e., the usual OLS t-statistic is divergent). For another, even when
one has the prototypical Granger and Newbold “spurious regression” case (ρ = 1 in eq. (2) and θ = 1 in
eq. (3)), but takes care of the easy to detect autocorrelation in the residual through the Cochrane-Orcutt
feasible GLS or any other technique that takes care of the serial correlation like eq. (10), it turns out that
these two techniques deliver correctly sized tests, are unbiased, are consistent, and are roughly as effi-
cient as the OLS on first differenced data (which in this case is the exact GLS best unbiased estimator).

Appendix A: Can one miss the autocorrelation in the error term?

The following Table A.1 and Table A.2 show the means of three statistics that are used to detect
autocorrelation in the residuals, and the fraction of time that each of them failed to detect autocor-
relation when it was in fact present. For “spurious regression” even for sample sizes as small as 30
observations, all three methods fail to detect it less than 5% of the time (not reported in the table
below). If the sample size is 70 or larger, all three methods virtually never fail to reject the null
hypothesis of no autocorrelation. The situation is similar when autocorrelation is somewhat lower
0.8 or 0.6 – autocorrelation at these level is impossible to miss.

Table A.1:
The parameter

ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set to 1. To conserve space,
results for selected sample sizes of T = [70, 200, 500, 1000] observations are reported in the table.

D̂W ρ̃ ρ̂

T [D̂W] [|tρ̃ |< 1.96] [|tρ̂ |< 1.96]
Means of the statistics for ρ = 1

70 0.2442 0.0000 0.8755 0.0000 0.9007 0.0000
200 0.0891 0.0000 0.9551 0.0000 0.9642 0.0000
500 0.0360 0.0000 0.9819 0.0000 0.9856 0.0000
1000 0.0181 0.0000 0.9909 0.0000 0.9928 0.0000

Means of the statistics for ρ = 0.8
70 0.5545 0.0000 0.7182 0.0000 0.7248 0.0001
200 0.4519 0.0000 0.7728 0.0000 0.7738 0.0000
500 0.4204 0.0000 0.7894 0.0000 0.7895 0.0000
1000 0.4099 0.0000 0.7948 0.0000 0.7949 0.0000

Means of the statistics for ρ = 0.6
70 0.9193 0.0030 0.5334 0.0059 0.5362 0.0058
200 0.8402 0.0000 0.5777 0.0000 0.5781 0.0000
500 0.8163 0.0000 0.5911 0.0000 0.5911 0.0000
1000 0.8080 0.0000 0.5956 0.0000 0.5956 0.0000
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In the Table A.1 and Table A.2, D̂W is the Durbin-Watson statistic, ρ̃ is the estimated ρ from
regressing the OLS residual on the lagged OLS residual, and ρ̂ is the directly estimated ρ in eq. (10).
[D̂W] is an indicator taking the value of 1 if the Durbin-Watson statistic exceeds 1.5 and the OLS
t-statistic on the slope parameter rejects the Ho: β1 = 0 (rough rule of thumb that approximates the
case that in “spurious regression” we would think that the two variables are related and in the same
time we would fail to detect the severe positive autocorrelation in the residual). [|tρ̃ |< 1.96] is an
indicator taking the value of 1 if we regress OLS residuals on the lagged OLS residuals and fail to
reject the null hypothesis that the autoregressive parameter is different from 0. [|tρ̂ | < 1.96] is an
indicator that is 1 if we fail to reject the null hypothesis that ρ = 0 in eq. (10).

Table A.2:
The parameter

ρ in eq. (2) is set to 1, 0.8 and 0.6, and the parameter θ in eq. (3) is set to 0.8. To conserve space,
results for selected sample sizes of T = [70, 200, 500, 1000] observations are reported in the table.

D̂W ρ̃ ρ̂

T [D̂W] [|tρ̃ |< 1.96] [|tρ̂ |< 1.96]
Means of the statistics for ρ = 1

70 0.2084 0.0000 0.8939 0.0000 0.9194 0.0000
200 0.0728 0.0000 0.9634 0.0000 0.9726 0.0000
500 0.0288 0.0000 0.9856 0.0000 0.9892 0.0000
1000 0.0145 0.0000 0.9928 0.0000 0.9946 0.0000

Means of the statistics for ρ = 0.8
70 0.5454 0.0000 0.7231 0.0000 0.7357 0.0000
200 0.4493 0.0000 0.7742 0.0000 0.7785 0.0000
500 0.4193 0.0000 0.7899 0.0000 0.7915 0.0000
1000 0.4095 0.0000 0.7950 0.0000 0.7958 0.0000

Means of the statistics for ρ = 0.6
70 0.9098 0.0026 0.5382 0.0063 0.5449 0.0058
200 0.8384 0.0000 0.5787 0.0000 0.5808 0.0000
500 0.8159 0.0000 0.5912 0.0000 0.5921 0.0000
1000 0.8075 0.0000 0.5958 0.0000 0.5962 0.0000

Appendix B: Simulation with an I(2) regressor

In the main body of the paper I studied spurious regression where the regressor is an I(1) variable.
The order of integration of the dependent variable is determined by the value of ρ . When ρ = 1, the
dependent variable is I(1). When ρ < 1 the dependent variable is I(0). Here I study the situation where
the regressor is I(2) variable.

I generate 30,000 replications from the model

yt = β0 +β1xt +ut , [β0 β1] = [00]

ut = ρut−1 + et , u0 = e0, ρ = [1, 0.8, 0.6]

xt = 2xt−1− xt−2 +wt ⇔ (xt− xt−1)− (xt−1− xt−2) = wt , x0 = w0,x1 = w1

and each wt∼ iidNormal(0,1) is independent of each et∼ iidNormal(0,1)

for sample sizes of T = [15, 30, 70, 100, 200, 500, 1000, 9000].

For each replication round I generate 1000+T observations and discard the first 1000, using only
the last T observations for estimation.
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Means for the estimators and t-statistic rejection rates for the true null hypothesis

For a description of the estimators in Table B see Section 3.1. Each entry in the Table B that follows
contains the mean of a quantity computed over the 30,000 replication rounds. The mean of the estimate
is followed by the mean of an indicator variable taking the value of 1 if the t-statistic associated
with the given estimate and with the (true) null hypothesis Ho: β1 = 0 exceeds in absolute value the
appropriate critical value for Student’s t random variable. In other words we have a column of the
means of the estimates followed by the rejection rate under the null hypothesis. The test of the null
hypothesis is always carried out at the 5% significance level. To conserve space, results for selected
sample sizes of T = [70, 200, 500, 1000] observations are reported in the table.

Table B
β̂OLS β̃GLS β̂DOLS β̂CO β̂OS

T [|t
β̂OLS
|> tc] [|t

β̃GLS
|> tc] [|t

β̂DOLS
|> tc] [|t

β̂CO
|> tc] [|t

β̂OS
|> tc]

Means of the statistics for ρ = 1
70 0.0000 0.8435 -0.0004 0.0501 -0.0004 0.0501 -0.0002 0.4928 -0.0012 0.1545
200 0.0000 0.9081 -0.0000 0.0515 -0.0000 0.0515 0.0000 0.4795 0.0002 0.1635
500 -0.0000 0.9403 0.0000 0.0498 0.0000 0.0498 0.0000 0.4616 0.0000 0.1686
1000 -0.0000 0.9563 -0.0000 0.0498 -0.0000 0.0498 -0.0000 0.4450 -0.0000 0.1736

Means of the statistics for ρ = 0.8
70 -0.0000 0.5126 -0.0000 0.0458 -0.0002 0.0032 -0.0000 0.1480 -0.0005 0.1031
200 -0.0000 0.5203 -0.0000 0.0508 -0.0000 0.0002 -0.0000 0.0890 -0.0003 0.0732
500 -0.0000 0.5126 0.0000 0.0488 0.0000 0.0000 0.0000 0.0675 0.0001 0.0602
1000 0.0000 0.5153 -0.0000 0.0524 0.0000 0.0000 0.0000 0.0595 0.0000 0.0541

Means of the statistics for ρ = 0.6
70 0.0000 0.3246 0.0000 0.0512 -0.0003 0.0005 -0.0000 0.0973 -0.0001 0.0768
200 0.0000 0.3253 0.0000 0.0501 0.0001 0.0000 0.0000 0.0677 0.0002 0.0603
500 0.0000 0.3252 0.0000 0.0494 -0.0000 0.0000 0.0000 0.0574 -0.0001 0.0559
1000 0.0000 0.3268 0.0000 0.0501 -0.0000 0.0000 0.0000 0.0532 -0.0000 0.0539

Looking through the entries of the Table B, we observe the following.
1. All five estimators, including the OLS estimator are unbiased.
2. The t-statistic associated with the OLS estimator is divergent for the regression of I(1) on I(2)

variable (the first panel). It is severely distorted, but not divergent for regressions of I(0) on I(2)
variable (second and third panel).

3. The t-statistic associated with the true GLS is precisely sized for any sample size, as predicted
by theory.

4. The t-statistic associated with the mis-specified first differenced OLS is correctly sized for regression
of I(1) on I(2) variable (first panel). However for regressions of I(0) on I(2) variable the rejection
rate does not approach the nominally stated level of the test of 5%, but instead approaches 0.

5. The t-statistics associated with the Cochrane-Orcutt feasible GLS and the one step estimator in eq.
(10) exhibit notable size distortions for regressions of I(0) on I(2) variable (second and third panel),
and as the sample size increases they approach the nominally stated size of the test of 5% (however
they do so rather slowly). They exhibit severe size distortions for regressions of I(1) on I(2) (first
panel). Note however that the t-statistics associated with the feasible versions do not diverge.

These results are interesting, however I leave more careful investigation of what is going on here
for future research. As a practical matter, it should be noted that it is hard to miss the point that an
I(2) variable is non-stationary, as just looking at plots of I(2) variables clearly reveal that they are
trending. Seeing plots of I(2) variables against time, one might still wonder whether what one sees
is a deterministic time trend, or stochastic trend.
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