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Abstract 

This study has attempted to analyze the dynamics of renewable energy consumption, economic growth, and CO2 
emissions. For the analysis, we used structural VAR approach. Results of unit root tests show that all variables are 
non-stationary at their level form and stationary in first difference form and cointegration analysis, analyzed through 
Johansen-Juselius (1990), shows that there is no evidence of cointegration among the test variables. The innovations 
analysis of study reveals that a positive shock on the consumption of renewable energy source increases GDP and 
decreases CO2 emissions and a positive shock on GDP have a very high positive impact on the CO2 emissions. The 
variance decomposition shows the share of consumption of renewable energy source explained a significant part of the 
forecast error variance of GDP and a relatively smaller or negligible part of the forecast error variance of CO2 
emissions.
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1. Introduction  

 
Since the negotiation of the Kyoto Protocol (1997), both developing and developed countries 
have been giving a strong emphasis, on their various national and international meetings, 
conferences, seminars and last but not least workshops, on the need to replace growing 
consumption of Non-Renewable Energy Sources (NRES) in general and fossil fuels in particular 
for Renewable Energy Sources (RES). This protocol demands reduction of the Greenhouse gas 
emissions (GHGs) by 5.2 % from the level of the 1990 during 2008-2012 and GHGs particularly 
carbon dioxide (CO2) emissions, are considered to be the main causes of global warming. In 
addition, a sharp increase of CO2 concentration is mostly due to the combustion of fossil fuels 
(coal, oil and natural gas) (Halicioglu, 2009 and Soytas and Sari, 2009) arising from the energy 
sector (Jaccard et al., 2003 and Köhler et al., 2006). Specifically, Halicioglu (2009) mentioned 
that CO2 emissions are the most important polluting gas and it is responsible for 58.8% of the 
GHG emissions worldwide.  
 
In this regard BP Statistical Review of World Energy (2010, pp. 2) states that “world primary 
energy consumption- including oil, natural gas, coal, nuclear and hydro power- fell by 1.1% in 
2009, the first decline since 1982 and the largest decline (in percentage terms) since 1980. 
Consumption in OECD countries fell by 5%, the largest decline on record; OECD consumption 
reached the lowest level since 1998. Energy consumption declined in all regions except Asia 
Pacific and the Middle East; Chinese energy consumption growth accelerated to 8.7%. 
Hydroelectric power generation increased by 1.5%, and was the world’s fastest-growing major 
fuel for a second consecutive year.”  
 
In addition , BP Statistical Review of World Energy (2010, pp. 5) document that “Hydroelectric 
generation grew by a below-average 1.5%, which was nonetheless sufficient to make hydro the 
world’s fastest-growing major fuel in 2009. Growth was led by China, Brazil, and the US.” BP 
Statistical Review of World Energy (2010, pp. 5) has also mentioned, “While other forms of 
renewable energy remain a small share of the global energy mix, they have continued to grow 
rapidly. Continued government support, including targeted fiscal stimulus in many countries, 
helped to boost global wind and solar generation capacity by 31% and 47% respectively.” BP 
Statistical Review of World Energy (2010, pp. 38) states that among the ASIAN countries, India 
consumes 3.2% of electricity generated through hydropower which is next to China. Therefore, 
in the present study we have attempted to analyze the role of renewable energy consumption on 
the economic growth of India.  
 

2. A brief review of literature  
 
There are various studies, which focused on the relationship between energy consumption in 
general and electricity consumption in particular, and economic growth. Economic growth 
measured in terms of gross domestic product (real or in per capita) or growth rate of GDP, using 
different econometric methodologies, countries and time period and have found conflicting 
results.  
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Here we provide some brief review of literature on the recent studies, which have analyzed the 
impact of energy consumption at disaggregated economic growth and employment.1 Yang 
(2000) found bidirectional causality between aggregate energy consumption and GDP in Taiwan. 
However, at the disaggregation of energy sources he found bidirectional causality between GDP 
and coal, GDP and electricity consumption and GDP and total energy consumption, but 
unidirectional causality running from GDP to oil consumption and from natural gas to GDP. Sari 
and Soytas (2004) found that waste had the largest initial impact, followed by oil however; 
lignite, waste, oil, and hydropower explained the larger amount of GDP variation among energy 
sources within the 3-year horizon respectively. Wolde-Rufael (2004) found unidirectional 
Granger causality from coal, coke, electricity, and total energy consumption to real GDP, but no 
causality in any direction, between oil and real GDP. Domac et al., (2005) argue that bio-energy 
should help increase the economies’ macroeconomic efficiency through the creation of 
employment and other economic gains and Awerbuch and Sauter (2006) added that RES had a 
positive effect on economic growth by reducing the negative effects of oil prices volatility either 
by providing energy supply security or otherwise. Ewing et al., (2007) found that shocks arises 
due to NRES consumption like coal, gas and oil had more impact on output variation than the 
shocks arises due to RES. Chien and Hu (2008) have studied the effects of RES on GDP for 116 
economies in 2003 through the Structural Equation Modeling (SEM) approach. They concluded 
that RES had a positive indirect effect on GDP through the increase in capital formation; 
however, RES did not show any improvement on the trade balance with no import substitution 
effect. Sari et al., (2008) by using autoregressive distributed lag (ARDL) approach for the USA 
found that, in the long-run, industrial production and employment were the key determinants of 
fossil fuel, hydro, solar, waste and wind energy consumption, but did not have a significant 
impact on natural gas and wood energy consumption. Chang et al., (2009) by using Panel 
Threshold Regression (PTR) model for the OECD countries over the period 1997-2006 asserted 
that there was no direct and simple relationship between GDP and the contribution of RES to 
energy supply. They concluded by documenting that the level of economic growth of a country 
influenced the use of RES as a way to respond to oil price shocks. High-economic growth 
countries used RES to minimize the effects of adverse price shock, but low-economic growth 
countries were unable to do so. Therefore, the first countries exhibited a substitution effect 
towards RES to avoid the negative relationship between oil prices and GDP. Sadorsky (2009a) 
used a panel data model to estimate the impact of RES (which includes geothermal, wind and 
solar power, waste and wood) on economic growth and CO2 emissions per capita and oil price 
for the G7 countries. The author found that, in the long-run, real GDP per capita and CO2 
emissions per capita were the main drivers of renewable energy consumption per capita. Oil 
prices had a smaller and negative effect on renewable energy consumption. In the short term, 
movements drove variations in renewable energy consumption back to the long-term equilibrium 
rather than short term shocks. Sadorsky, (2009b) studied the relationship between RES (wind, 
solar and geothermal power, wood and wastes) and economic growth in a panel framework of 18 
emerging economies for the period 1994-2003 and found that increases in real GDP had a 
positive and statistically significant effect on renewable energy consumption per capita. Payne 
(2009) provides a comparative causal analysis of the relationship between RES and NRES and 
real GDP for the USA over the period 1949-2006 and found no Granger causality between 
renewable and nonrenewable energy consumption and real GDP. Apergis and Payne (2010) 

                                                           
1 See Tiwari (2011a, 2011b) for comprehensive review of literature.  
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attempted to study the relationship between RES and economic growth for 20 OECD countries 
over the period 1985-2005 within a framework of production function by incorporating capital 
formation and labor in the analysis and found a long-run equilibrium relationship between real 
GDP and RES.  
 

 
3. Methodology and data source  

 
In this paper, we analyze the relationship between the RES, economic growth, and CO2 
emissions in the context of India in SVAR framework as to the best of our knowledge this kind 
of work do not exist for Indian economy. In most of the studies, VAR approach is used to 
analyze the dynamic impacts of different types of random disturbances on the variables in the 
model (Ferreira et al., 2005) as it takes into consideration those interactions and all variables are 
treated as endogenous as a function of all variables in lags. However, the reduced form VAR 
does not consider the structural relationships among the variables unless some identification 
restrictions are assumed. In this sense, SVAR analysis is an attempt to solve the traditional 
identification problem. Therefore, the SVAR can be used to predict the effects of specific policy 
actions or of important changes in the economy (Narayan et al., 2008) for example, change in the 
energy supply mix. Hence, policy makers and economic forecasters the ca use the results 
obtained from the model to predict how some variables, for example, GDP and RES respond 
over time to changes in policies (Buckle et al., 2002). For the analysis we used Gross Domestic 
Product (GDP per capita constant 2000 US$, a measure of economic growth), RES (measured by 
hydroelectricity consumption) and CO2 emissions (measured in Million tons).2 For the purpose 
of analysis, we have transformed all variables in natural logarithm as it minimizes the 
fluctuations in the data series (Tiwari, 2010). First of all in order to identify the order of the 
integration of the series Ng and Perron (2001) unit root test has been employed as it is 
considered to be better that other tests of unit root like Augmented Dickey Fuller (ADF) (1981) 
and Phillips and Perron (PP) test and then cointegration analysis has been conducted in order to 
identify nature of cointegration, if any exist, among the test variables. In the next step, we 
construct a SVAR and plot the impulse response functions (IRFs) of GDP and CO2 emissions 
when a positive shock to RES and GDP occurs and in the final step, we study the forecasts error 
variance decomposition of SVAR model. Lag-length to be incorporated in our analysis is 
determined based on Akaike Information Criteria (AIC) because of its better performance in 
small sample (Liew, 2004). Moreover, in order to compute SVAR we must impose restrictions 
on the parameter matrices. These restrictions can either be of contemporaneous restrictions type 
on the parameter matrices of A0 and B (where A0 and B are the (K × K) that indicates 
instantaneous relationship relations of variables in Xt and εt respectively3) or of long-run 
restrictions type on the total effects of structural shocks in order to identify the structural 
parameters. However, in this paper we apply the long-run restrictions method proposed by 
Blanchard and Quah (1989). The long-run restrictions model sets A0 as an identity matrix, i.e. A0 
= IK. These restrictions are based on the long-run restrictions that we imposed on the cumulative 
                                                           
2 Data of GDP is obtained from World Development Indicators accesses form the website of World Bank (on 
October 12, 2010) and CO2 emission data and Hydroelectricity consumption data is accessed from 
http://www.bp.com/bodycopyarticle.do?categoryId=1&contentId=7052055 (accessed on October 25, 2010.) 
3 Where Xt represents vector of four endogenous variables used in our analysis and εt represents vector shocks 
associated with four endogenous variables. K represents the number of variables i.e., four.  
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impulse response function. Totally, K(K −1)/2 restrictions are imposed on the lower triangular 
matrix where some of the structural shocks do not have contemporaneous impacts on the other 
variables. The variables are ordered as follows: RES, GDP, and CO2.

4 Moreover, we assume that 
the first variable (that is RES) has impacts on all variables below it (i.e., GDP and CO2 
emissions) but it does not receive any impacts from these variables. The second variable (i.e., 
GDP) only receives the impacts from the first variable (i.e., RES) and does not have any affect 
the first variable but it can influence the variables below it (i.e., CO2 emissions). Thus, we have 
made long-run multiplier matrix, a lower triangular matrix.  
 

4. Data analysis and results  
 

First, unit root test has been carried out for all variables using Ng and Perron (NP) test (2001). 
Ng and Perron (NP) has given three tests of unit root analysis but MZa and MZt are said to be 
more powerful test (Mollick, 2009) so, this study has used these two tests only. Results of unit 
roots are reported in Table-1 and graphical plot of the log-level data of variables is presented in 
appendix 1. 

Table 1: Unit root analysis 

Variables Unit root tests                   
Constant and 
trend 

NP 
(MZa) (k) (MZt) (k) 

Ln(GDPPC) Yes  0.32935 (0) 0.16462 (0) 
D(Ln(GDPPC)) Yes -22.1745** (0) -3.32927**(0) 
Ln(Hec) Yes  -5.95680 (0) -1.68983 (0) 
D(Ln(Hec)) Yes -21.5917** (0) -3.25524** (0) 
Ln(CO2)) Yes  -7.50956 (0) -1.85365 (0) 
D(Ln(CO2)) Yes -21.4943** (0) -3.27791** (0) 
Note: (1) **denotes significant at 5% level. (2) “K” denotes lag length. (3) 
Selection of lag length in NP test is based on Spectral GLS-detrended AR 
based on SIC.  
Source: Authors calculation 

 

It is evident from Table-1 that all variables are nonstationary in their level form and they are 
turning to be stationary after first difference i.e., I(1). Since all variable are I(1) therefore we can 
proceed for cointegration analysis. To proceed for cointegration first step is selection of 
appropriate lag length. Therefore, we have carried out a joint test of lag length selection, which 
suggests (based on AIC) we should take two lag of each variable. Hence, by choosing lag two we 
have conducted model selection test and found that both AIC and SIC prefers model 5. 
Therefore, we have attempted for 5th model to check the possibility of existence of cointegration 
and also for 4th model (since in the 4th model we have lowest values of SIC and AIC after fifth 
model) this is because fifth model is argued to be theoretically difficult to interpret. However, we 
did not find any evidence of cointegrating relationship among the test variable in any of the two 

                                                           
4 Our restrictions are based on the assumption that as hydro systems allow some storage levels (Amundsen and 
Bergman, 2002) therefore its consumption affects GDP and in the reduction in the CO2 emissions and CO2 has no 
short-term effect on GDP and hydro consumption since there is no direct causality relation.  
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models.5 Further, for analyzing the non-stationary series in a VAR system Ramaswamy and 
Sloek (1997) mentions three possible ways to specify. First, either to specify the series in 
differenced form, second, to specify them in levels, and third to consider the cointegration 
relationships among the test variables by applying a vector error correction model (VECM) and 
this is considered when the cointegration relationship is known. In addition, if the cointegration 
relationship is unknown, VECM can be biased and it could be more appropriate to consider the 
VAR in levels. In this paper, however, we apply a structural VAR model in differenced form in 
order to generate efficient estimators, as we do not have cointegrating relationship among the test 
variables.6  
Further, since we have a sample size which is not large enough therefore, we have followed 
Benkwitz et al., (2001) who suggest that for small sample, properties of bootstrap confidence 
intervals are better in comparison to other asymptotic methodologies. Therefore, we have 
computed bootstrap percentile 95% confidence intervals (by following Hall, 1992 and Efron and 
Tibshirani, 1993) with 1000 bootstrap replications to illustrate parameter uncertainty. The 
horizon of all responses is 20 years. In the following Figures (1a to 1c of Figure-1), we represent 
the impulse response functions.  

Figure-1: IRFs in SVAR 

Figure-1a                                              Figure-1b                                                

 
Figure-1c 

 
                                                           
5 Results of cointegration relationship of the two models, lag length selection, and model selection are presented in 
appendix 1.   
6 Structural VAR Estimation Results of contemporaneous impact and long run impact are shown in appendix 2.  
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It is evident from Figure-1a of Figure-1 that any one positive standard deviation 
shock/innovation to REs has very high and positive impact on the real GDP of India. Figure-1b 
reviles that any one positive standard deviation shock/innovation to RES has negative impact on 
the CO2 emissions throughout 20 years (except first year in that case its impact is positive). 
Figure-1c reviles that any one positive standard deviation shock/innovation to GDP has positive 
impact throughout 20 years on CO2 emissions. Therefore, we can conclude from IRFs of SVAR 
analysis that consumption of RES increases GDP in a greater extent and reduces CO2 emissions. 
Further, higher growth rate increases CO2 emissions. Hence, this implies that higher growth path 
achieved via consumption of RES has two fold advantages of attaining and maintaining 
sustained and safest growth.  
Further, we have analyzed the variance decomposition which indicates how much of the forecast 
error variance of each variable can be explained by exogenous shocks (changes) to the variables 
in the same VAR model. Innovations/shocks to an individual variable can affect both own 
changes and changes in the other variables (Ewing et al., 2007). However, in the present context 
we have analyzed how much of the forecast error variance of real GDP and CO2 emissions are 
explained by each variable in the model. 
 

Table-2: Variance Decompositions (VDs) analysis 
Proportions of forecast error in D(Ln (GDPC)) accounted for by: 
 Period D(Ln (Hec))  D(Ln (GDPC)) D(Ln (CO2)) 
 1 0.32 0.58 0.10     
 2 0.28         0.49         0.23 
 3 0.28         0.49         0.23 
 4 0.28         0.49         0.23 
 5 0.28         0.49         0.23 
 10 0.28         0.49         0.23 
15 0.28         0.49         0.23 
20 0.28         0.49         0.23 
Proportions of forecast error in D(Ln (CO2)) accounted for by: 
 Period D(Ln (Hec))  D(Ln (GDPC)) D(Ln (CO2)) 
 1 0.00         0.29         0.71 
 2 0.01         0.28 0.71 
 3 0.02 0.29         0.70 
 4 0.02 0.29         0.70 
 5 0.02 0.29         0.70 
 10 0.02 0.29         0.70 
15 0.02 0.29         0.70 
20 0.02 0.29         0.70 
Source: Authors’ calculations  
 

It is evident from Table-2 that in the first year GDP itself explains 58% of forecast error in its 
own value and between CO2 emissions and RES, RES explains largest proportion of forecast 
error throughout 20 years of period. Though explanatory power of RES has not increased in this 
duration, yet it is very high. Further, we find that larger proportion of forecast error variations in 
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CO2 emissions are explained by its own value, however GDP explains around 30% of the 
forecast error variation in CO2 emissions and RES explains a very less i.e., 2% of forecast error 
variation in CO2 emissions.   
 

5. Conclusions and policy implications 
 

In recent years, dependence on the non-renewable energy sources has declined due to increasing 
awareness about environmental concern and focus of energy generation through renewable 
energy sources. This has increased renewal generation of energy in both developed and 
developing countries in recent years. This has happened either due to external (i.e., imposed by 
some international environmental body) or internal (i.e., by recognizing the consequences of 
environmental degradation on humankind) reasons. In this regards the aim of this paper is to 
analyze how an increasing share of renewable sources on electricity generation affects Gross 
Domestic Product (GDP). There are several methodologies that could be used for this purpose 
however, Structural Vector Autoregressive (SVAR) methodology considers the interactions 
among all variables in the model and is well suited to predict the effects of specific policy 
actions or important changes in the economy. Therefore, SVAR approach has been chosen for 
our analysis. We used a three variables (i.e., RES, GDP and CO2 emissions) SVAR model for 
India along the period 1960-2009.  
 
In this study, we use SVAR model and the plotted IRFs and calculated VDs to estimate the 
impacts on real GDP and CO2 emissions arising from a positive shock on the RES. Our analysis 
revels that in general, a positive shock on the RES increases GDP and decreases CO2 emissions. 
Further, we find that a positive shock on the GDP has very high positive impact on the CO2 
emissions. The variance decomposition showed that the share of RES explained a significant part 
of the forecast error variance of GDP and a relatively smaller or negligible part of the forecast 
error variance of CO2 emissions. Our results indicate that an increase in the RES share may 
initially increase CO2 emissions (in first year) therefore Indian government may need to 
complement RES support with other policies, such as demand-side management and energy 
conservation, in order to achieve environmental goals at the least cost. However, we have 
provided evidence for India in case of only one renewable energy source i.e., consumption of 
hydroelectricity, yet analysis at more disaggregated level and with inclusion of other renewable 
sources can be conducted. Further, we recommend to the policy makers of India pertaining to 
energy related matters, to achieve sustained, safest, and fastest growth, through renewable energy 
consumption. As it has been found in previous studies conducted for India that energy 
consumption (in which major proportion was of NRES was higher vis-à-vis RES; for reference 
on this one my refer Tiwari, 2011a, 2011b) do not contribute to the economic growth. In addition 
to that a comparative analysis of the impact of RES and NRES on economic growth and 
pollution can be conducted at the both aggregate and disaggregate level.  
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Appendix 1 
Figure 1: plots of log-level data of Hydroelectricity Consumption, GDP per capita (constant 

2000 US$) and CO2 emissions  

 
 
 
 

Table 1: VAR Lag Order Selection Criteria 
Endogenous variables: Ln(Hec), Ln(GDPPC) and Ln(CO2)    
Exogenous variables: C      
Sample: 1965 2009      
Included observations: 41     

       
 Lag LogL LR FPE AIC SC HQ 

0  28.22703 NA   5.86e-05 -1.230587 -1.105204 -1.184929 
1  226.5585  357.9640  5.73e-09 -10.46627  -9.964733*  -10.28364* 
2  237.8951   18.80224*   5.15e-09*  -10.58025* -9.702565 -10.26064 
3  241.3184  5.176690  6.90e-09 -10.30821 -9.054381 -9.851637 
4  246.9256  7.658582  8.46e-09 -10.14271 -8.512728 -9.549161 
       
        Note: (1)* indicates lag order selected by the criterion (2) LR, FPE, AIC, SC, HQ,  denotes 

sequential modified LR test statistic (each test at 5% level), Final prediction error, Akaike 
information criterion, Schwarz information criterion, and Hannan-Quinn information criterion 
respectively.   
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Table 2: Model selection test 
Sample: 1965 2009    
Included observations: 42    
Series: Ln(Hec), Ln(GDPPC) and Ln(CO2)    
Lags interval: 1 to 2    
 Selected (0.05 level*) Number of Cointegrating Relations by Model 
Data Trend: None None Linear Linear Quadratic 
Test Type No Intercept Intercept Intercept Intercept Intercept 

 No Trend No Trend No Trend Trend Trend 
Trace 3 3 1 0 0 

Max-Eig 3 3 0 0 0 
 *Critical values based on MacKinnon-Haug-Michelis (1999)  
 Information Criteria by Rank and Model  
Data Trend: None None Linear Linear Quadratic 

Rank or No Intercept Intercept Intercept Intercept Intercept 
No. of CEs No Trend No Trend No Trend Trend Trend 

      
       Log Likelihood by Rank (rows) and Model (columns) 
0  222.8159  222.8159  233.0136  233.0136  241.4392 
1  233.5245  234.1401  242.4169  243.5863  249.5805 
2  239.7358  242.8777  248.5113  249.7160  252.2852 
3  245.1468  248.5826  248.5826  252.3014  252.3014 
      
       Akaike Information Criteria by Rank (rows) and Model (columns) 
0 -9.753139 -9.753139 -10.09588 -10.09588 -10.35425 
1 -9.977359 -9.959053 -10.25795 -10.26602  -10.45621* 
2 -9.987419 -10.04179 -10.26244 -10.22457 -10.29930 
3 -9.959371 -9.980123 -9.980123 -10.01435 -10.01435 
      
       Schwarz Criteria by Rank (rows) and Model (columns)  
0 -9.008424 -9.008424 -9.227050 -9.227050 -9.361291* 
1 -8.984405 -8.924725 -9.140875 -9.107569 -9.215020 
2 -8.746227 -8.717855 -8.897132 -8.776511 -8.809865 
3 -8.469940 -8.366573 -8.366573 -8.276685 -8.276685 
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Table 3: Cointegration test for model 5 
Sample (adjusted): 1968 2009   
Included observations: 42 after adjustments  
Trend assumption: Quadratic deterministic trend  
Series: Ln(Hec), Ln(GDPPC) and Ln(CO2)    
Lags interval (in first differences): 1 to 2  
Unrestricted Cointegration Rank Test (Trace)  
     
     Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None  0.321371  21.72457  35.01090  0.5935 

At most 1  0.120848  5.441959  18.39771  0.9088 
At most 2  0.000772  0.032453  3.841466  0.8570 

     
      Trace test indicates no cointegration at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None  0.321371  16.28261  24.25202  0.3908 

At most 1  0.120848  5.409506  17.14769  0.8701 
At most 2  0.000772  0.032453  3.841466  0.8570 

     
      Max-eigenvalue test indicates no cointegration at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  
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Table 3: Cointegration test for model 4 
Sample (adjusted): 1968 2009   
Included observations: 42 after adjustments  
Trend assumption: Linear deterministic trend (restricted) 
Series: Ln(Hec), Ln(GDPPC) and Ln(CO2)    
Lags interval (in first differences): 1 to 2  
Unrestricted Cointegration Rank Test (Trace)  
     
Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None  0.395567  38.57572  42.91525  0.1271 

At most 1  0.253147  17.43023  25.87211  0.3835 
At most 2  0.115841  5.170979  12.51798  0.5720 

     
      Trace test indicates no cointegration at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
     
     Hypothesized  Max-Eigen 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None  0.395567  21.14549  25.82321  0.1840 

At most 1  0.253147  12.25925  19.38704  0.3914 
At most 2  0.115841  5.170979  12.51798  0.5720 

     
      Max-eigenvalue test indicates no cointegration at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values  

 
Appendix 2 

Table 1: Structural VAR Estimation Results 
Structural VAR Estimation Results: Identified accumulated long run impact matrix is lower diagonal 
Estimated contemporaneous impact matrix; in parenthesis Bootstrap t-values with 1000 replications 

Ln (Hec) Ln (GDPC) Ln (CO2) 
0.0963 (5.9498) -0.0009 (-0.0551) -0.0040 (-0.2812) 
0.0142 (2.7694) 0.0192 (4.0771) -0.0082 (-2.0953) 
-0.0013 (-0.1789) 0.0171 (2.5674) 0.0267 (4.6891) 
Estimated identified long run impact matrix; in parenthesis Bootstrap t-values with 1000 replications 
  0.1041 (4.0549) 0.0000 (0.0000) 0.0000 (0.0000)   
0.0118 (1.7506) 0.0196 (4.0007) 0.0000 (0.0000)    
-0.0014 (-0.1822) 0.0136 (1.9837) 0.0206  (3.8425)   
Source: Authors’ calculation  
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