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Abstract

We propose a computationally efficient approximation for the double bootstrap
bias adjustment factor without using the inner bootstrap loop. The approximation
converges in probability to the population bias correction factor. We study the finite
sample properties of the approximation in the context of a linear instrumental variable
model. In identified versions of the model considered in our Monte Carlo experiments,
the proposed approximation leads to estimators with lower variance than those based
on the double bootstrap and, lower adjusted mean-squared error than estimators based
on the single bootstrap. Evidence from the experiments we consider suggests that the
bootstrap is less effective in reducing the bias when the instrumental variable is weak
and endogeneity is strong.
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1 Introduction

Many econometric estimators although consistent in large samples have small sample bias.
The bootstrap is a simulation-based alternative to asymptotic approximation used to correct
for finite sample bias for the purpose of point estimation and/or inference.

Advances in statistical theory show that iterating (pre-pivoting) the bootstrap principle
brings yet further improvements upon the single bootstrap. Beran (1988) argues that pre-
pivoting reduces the dependence between the probability distribution of the resample and
the unknown data generating process. Therefore, resampling reinforces the conditions under
which the bootstrap performs the best: pivotal or asymptotically pivotal statistics. As a
result, the double bootstrap has typically higher order accuracy than the ordinary single
bootstrap and the bootstrap can be iterated to reduce the bias by a factor of O(n−1) suc-
cessively. See among others Beran (1988, 1987, 1990), Hall (1992, 1986), Hall and Martin
(1988), Lee and Young (1999) and Shi (1992).

These refinements come with a heavy computational cost due to the increasing com-
putational intensity of compounded sampling. This has prompted a number of authors to
develop computationally efficient and cheaper alternatives to eliminate the need for nested
levels of resampling. Much of the literature is however concerned with ways to generate fast
approximations to the P value and quantile functions. To the best of our knowledge, this
paper is perhaps the first to address the computational efficiency of approximating the bias
function.

The technique of this paper adapts the fast double bootstrap of Davidson and MacKinnon
(2002b, 2007) and the warp-speed method of Giacomini et al. (2007) for approximating
the rejection and coverage probabilities of bootstrap tests and confidence intervals to the
problem of approximating the bootstrap bias. The approximation requires only twice as
many computations as what is usually needed to perform the single bootstrap. We show an
optimality result which holds under general conditions and does not require an asymptotic
pivot.

The statistical properties of the proposed fast approximation are examined in a linear
instrumental variable framework through a Monte Carlo analysis. The results in our exper-
iments show that the fast approximation achieves significant bias reduction over the single
bootstrap without the increased variance and the computational cost of the double bootstrap.

We use the following notation throughout the paper: Eµ is the mathematical expectation
under the data generating process (DGP ) µ, Vµ is the variance under the DGP µ, the
indicator function 1{x} takes the value 1 if the statement in its argument is correct and 0
otherwise.

2 Bootstrap methods for bias correction

Let X1, X2, ... be a sequence of stationary random variables generated from a data generat-
ing process µ0 with unknown joint probability distribution F0 and possible indexed by an
unknown real-valued parameter θµ0 . Consider a random sample from the data generating
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process µ0 of X with realization Xn = (X1, X2, ..., Xn). Let µ̂ be the data generating process

(DGP ) governed by some estimate F̂ of the empirical distribution implied by Xn. We choose

the standard uniform F̂ (y) = 1
n

∑n
i=1 1{Xi ≤ y}.

Many statistical problems can be formulated as specifying the statistical properties of the
random variable Rn (Xn, θ(µ0)) such as its probability distribution function, moments and
quantile functions. The bootstrap uses a nonparametric estimate Fn of F0 to approximate
the distribution of Rn using R∗n = Rn(Xn, Fn).

The bootstrap principle approximates the sampling distribution of Rn (Xn, θ(µ0)) by the
bootstrap distribution of Rn(X∗n, θ(µ̂)), where X∗n is an IID random sample of size n drawn
with replacement from the original sample Xn using Fn. We use µ̂∗ to denote the data
generating process indexed by the bootstrap empirical distribution F̂ ∗ defined in analogous
way as F̂ , that is F̂ ∗(y) = 1

n

∑n
i=1 1(X∗i ≤ y).

2.1 The single bootstrap

To fix ideas, consider the root function Rn(Xn, θ(µ0)) = θ(µ̂) − θ(µ0), where θ(µ̂) is a
consistent estimator for θ(µ0). The theoretical bias β(µ0) is defined by the population
equation,

Eµ0 [Rn(Xn, θ(µ0)) + β(µ0)] = 0. (1)

The bootstrap estimate β(µ̂) for the bias correction β(µ0) is defined by the bootstrap version
of (1),

Eµ̂ [Rn(X∗n, θ(µ̂)) + β(µ̂)] = 0. (2)

Definition 1 The single bootstrap bias corrected estimator is defined as θ̂bc = θ(µ̂) + β(µ̂),
where β(µ̂) = θ(µ̂)− Eµ̂ [θ(µ̂∗)].

The single bootstrap algorithm. Given the original sample Xn, B bootstrap resamples
X∗nb , b = 1, · · · , B are randomly drawn from the DGP µ̂. For each bootstrap resample,

the sample value θ̂∗b of the statistic θ(µ̂∗) is computed. A Monte Carlo estimate of β̂∗ for the
theoretical bias β(µ̂) is calculated using

β̂∗ = θ(µ̂)− 1

B

B∑

b=1

θ̂∗b . (3)

The amount of uncorrected bias in θ̂bc is of order O(n−2); an improvement to the original
estimator θ(µ̂) which has a bias of order O(n−1). For a discussion of the bootstrap refine-
ments, see among others Horowitz (2001), Hall and Horowitz (1996), Efron (1987, 1979) and
Efron and Tibshirani (1986).
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2.2 The double bootstrap

Beran (1988, 1987) propose the idea of repeated pre-pivoting by mapping a test statistic τn,j
into a new test statistic τn,j+1 where τn,0 is the original sample statistic and τn,1 is the first
bootstrap statistic. The null distribution of τn,j is less strongly dependent on the parameters
indexing the unknown probability distribution F0. Hall (1986) shows that the accuracy of
the approximation using the jth (iterated) bootstrap critical value is of order O(n−(j+1)/2).
Furthermore, Shi (1992) shows that the double bootstrap principle can be used without the
need of a pivot.

In this section, we use follow Shi (1992), Hall (1992) and Davison and Hinkley (1997) to
derive the double bootstrap equation for mean bias correction.

Let X∗∗n be a (second level) IID random resample of size n drawn with replacement
from the first level sample X∗n using Fn. We use µ̂∗∗ to denote the data generating process
indexed by the empirical distribution of X∗∗n.

The likelihood function of θ(µ̂) differs from the conditional density function of θ(µ̂∗),
therefore the bootstrap bias estimator β(µ̂) in Definition 1 does not necessarily satisfy the
population equation in (1),

Eµ0 [Rn(Xn, θ(µ0)) + β(µ̂)] 6= 0. (4)

Using Davison and Hinkley (1997) notation, to adjust for the deviation from the population
equation, a perturbation or adjustment factor is introduced in the form of b(µ̂, γ(µ0)) such
that,

Eµ0 [Rn(Xn, θ(µ0)) + b(µ̂, γ(µ0))] = 0. (5)

For an additive perturbation, the adjustment takes the form b(µ̂, γ(µ0)) ≡ β(µ̂) + γ(µ0).
The bootstrap estimate for γ(µ0) is generated through the bootstrap version of (5):

Eµ̂ [Rn(X∗n, θ(µ̂)) + b(µ̂∗, γ(µ̂))] = 0. (6)

Notice that b(µ̂∗, γ(µ̂)) requires a second level bootstrap to estimate β(µ̂∗). The bootstrap
estimates for β(µ̂∗) and b(µ̂∗, γ(µ̂)) are defined by the sample equations:

Eµ̂∗ [Rn (X∗∗n, θ(µ̂∗)) + β(µ̂∗)] = 0, (7)

Eµ̂ [Rn(X∗n, θ(µ̂)) + b(µ̂∗, γ(µ̂))] = 0. (8)

Combining equations (7) and (8) and assuming an additive adjustment, the double boot-
strap estimate of the adjustment factor γ(µ̂) is rewritten as

γ(µ̂) = Eµ̂ [β(µ̂)− β(µ̂∗)] , (9)

= Eµ̂ {Eµ̂∗ [θ(µ̂∗∗)− θ(µ̂∗)]− [θ(µ̂∗)− θ(µ̂)]} . (10)

Definition 2 The double bootstrap bias estimation γ(µ̂) in equation (9) defines a double

bootstrap estimator θ̂dbc,
θ̂dbc = θ(µ̂) + β(µ̂) + γ(µ̂).
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The double bootstrap algorithm. From the original sample Xn, draw B1 bootstrap resamples
X∗nb , b = 1, · · · , B1 using the empirical distribution F̂n. For each resample X∗nb , (i) com-

pute the bootstrap realized value θ̂∗b of θ(µ̂∗b), (ii) draw B2 second level bootstrap resamples

X∗∗nb,j , j = 1, .., B2 from the bootstrap empirical distribution F̂ ∗b , and (iii) compute the second

level bootstrap estimators θ̂∗∗b,j, j = 1, .., B2. For b = 1, · · · , B1, compute an estimate β̂∗b for
the second level bias adjustment β(µ̂∗) as:

β̂∗b = θ̂∗b −
B2∑

j=1

θ̂∗∗b,j/B2.

The Monte Carlo estimate of the double bootstrap bias adjustment in equation (9), denoted
γ̂∗∗, is computed as

γ̂∗∗ = β̂ − 1

B1

B1∑

b=1

β̂∗b . (11)

The double bootstrap doesn’t come cheap. The algorithm makes a total of B1(B2 + 1)
(= 249500 for B2 = B1 = 499) visits to the statistic R(X∗n, θ(µ̂)). This indeed becomes
quickly computationally cumbersome depending on the model and the estimation method
despite the increase in computational power.

3 Fast methods for approximating the P value

Let us consider the case of estimating the rejection probability and P value of bootstrap tests.
Using the notation of Giacomini et al. (2007), consider the root function Rn(Xn, θ(µ0)) with
sampling distribution Jn(·, F ) and limiting distribution J(·, F ). The bootstrap principal

approximates the limiting distribution J(x, F ) using the bootstrap distribution Ĵn(x, F ∗n) ≡
P ∗n {Rn(X∗nk , θ(µ̂k)) ≤ x}.

Standard Monte Carlo experiment.

For each Monte Carlo sample Xn
k (with DGP µ̂k), draw B IID bootstrap samples from µ̂k.

The bootstrap estimate for Ĵn,k(·, F ∗n) is computed using J∗n,B,k(x) ≡ B−1
∑B

b=1Rn(Xn∗
k , θ(µ̂k)) ≤

x. The quantile q∗n,B,k is then computed by inverting J∗n,B,k(·). For a left-tail bootstrap test,
the empirical rejection probability is approximated using

RPn,B,K = K−1
K∑

k=1

1
{
Rn(Xn

k , θ(µ0)) ≤ q∗n,B,k(α)
}
. (12)

The standard Monte Carlo method requiresB·K computations of the root functionRn(X∗n, θ(µ̂)).

Applying the law of large numbers, J∗n,B,k converges to Ĵn,k(·, F ∗n). Let q̂∗(α) be the α quan-

tile of Ĵn(·, F ∗n), Ĵn(q̂∗(α), F ∗n) = α, then under some regularity conditions (see for example
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Giacomini et al. (2007)), RPn,B,K converges to

RP = Pµ̂ {Rn(Xn, θ(µ0)) ≤ q̂∗(α)} . (13)

Note that the rejection probability in equation (12) also corresponds to the bootstrap P
value. This can be seen by rewriting (13) as,

RP = Pµ̂ {Pµ̂∗ [Rn(X∗∗n, θ(µ̂∗)) ≤ Rn(Xn, θ(µ0))] ≤ α} (14)

Warp/fast algorithm.

For each Monte Carlo sample Xn
k , k = 1, · · · , K, draw B = 1 bootstrap resample X∗nk and

compute the root Rn(Xn∗
k , θ(µ̂k)). Giacomini et al. (2007) provide conditions under which

the distribution function Ĵn(x, F ∗n) can be approximated using,

Jn,K(x) ≡ K−1
K∑

k=1

1 {Rn(X∗nk , θ(µ̂k)) ≤ x} .

An approximation for the bootstrap probability (at nominal level α) follows,

R̂P n,K = K−1
K∑

k=1

1 {Rn(Xn
k , θ(µ0)) ≤ q̂n,K(α)} , (15)

where q̂n,K(α) is the α quantile of Jn,K satisfying, q̂n,K(α) ≡ inf{x, Jn,K(x) ≥ α}. This is

the same estimate R̂PA in Davidson and MacKinnon (2007).
The double bootstrap P value (see for example Shi (1992), Davidson and MacKinnon (2002b,a))

is defined as,

p̂∗∗ = Pµ̂ {Pµ̂∗ [Rn(X∗∗nk , θ(µ̂∗)) ≤ Rn(X∗nk , θ(µ̂))] ≤ p∗} , (16)

where p∗ is the first level bootstrap approximation for the P value,

p∗ = Pµ̂ [Rn(X∗nk , θ(µ̂)) ≤ Rn(Xn
k , θ(µ0))] .

The fast double bootstrap approximation of Davidson and MacKinnon (2007) is obtained

by taking the bootstrap version of R̂P n,K ,

p̂∗∗n,B = B−1
B∑

j=1

1
{
Rn(X∗nk , θ(µ̂)) ≤ q̂∗∗n,B(p̂∗)

}
, (17)

where q̂∗∗n,B(α) ≡ inf{x, J∗n,B(x) ≥ α}, J∗n,B(x) ≡ B−1
∑B

b=1 1 {Rn(X∗∗nb , θ(µ̂∗b)) ≤ x} and

p̂∗ ≡ B−1
∑B

b=1 1 {Rn(X∗nb , θ(µ̂
∗
b)) ≤ Rn(Xn, θ(µ0))}.
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4 Fast approximation of the bootstrap bias correction

In this section we propose a computationally efficient approximation of the calibrating coef-
ficient γ(µ̂) of Definition 2 using the fast/warp-speed method described earlier. The double
bootstrap adjustment factor γ(µ̂) in equation (10) can be expressed as

γ(µ̂) = Eµ̂ {Eµ̂∗ [Rn(X∗∗n, θ(µ̂∗))−Rn(X∗n, θ(µ̂))]} , (18)

where Rn(Xn, θ(µ0)) = θ(µ̂)− θ(µ0). Notice the analogy between the population equations
in (14) and (18). The former is calculating “global probability” and the latter “global expec-
tation”. Our proposed approximation of the double bootstrap bias adjustment builds up on
this analogy and the results already established for the quantile and the P value functions.

Definition 3 Let n be a given sample size and B1 a finite integer. For each first level
bootstrap resample X∗nb , b = 1, · · · , B1, draw B2 = 1 second level bootstrap resample X∗∗nb . Let
Rn,B1(x) = B−11

∑B1

b=1 [Rn(X∗nb , θ(µ̂)) + x] and R
∗
n,B1

(x) = B−11

∑B1

b=1 [Rn(X∗∗nb , θ(µ̂∗)) + x].

The first level bootstrap bias β(µ̂) satisfies Rn,B1 (β(µ̂)) = 0. We propose an approximation

for γ(µ̂), denoted γFDA, such that R
∗
n,B1

(β(µ̂)) = γFDA: γFDA = B−11

∑B1

b=1Rn(X∗∗nb , θ(µ̂∗))+
β(µ̂).

This approximation defines a fast double bootstrap bias corrected estimator θ̂FDA

θ̂FDA = θ(µ̂) + β(µ̂) + γFDA. (19)

Assumption 1 Eµ̂ {Rn(X∗n, θ(µ̂))} exists and Eµ̂ |Rn(X∗n, θ(µ̂))|2 <∞ for n = 1, 2, · · · .

The convergence of the warp-speed approximation to the bootstrap distribution in Giacomini
et al. (2007) does not require an asymptotic pivot or differentiability of the root. Indeed
for scalar-valued θ(µ0) and IID data, convergence only requires Rn : Xn × < → < to be
measurable for n = 1, 2, · · · .

Corollary 1 Suppose that Assumption 1 holds and that Rn : Xn×< → < is measurable for
n = 1, 2, · · · . Then for each n and x,

R
∗
n,B1

(x)→ Eµ̂Eµ̂∗ [Rn(X∗∗n, θ(µ̂∗)) + x] as B1 →∞,

and γFDA converges in probability to γ(µ̂): γFDA → γ(µ̂).

Proof in Appendix A.
Implementing the fast double bootstrap approximation. For each first level

bootstrap resample X∗nb : (i) compute θ̂∗b , (ii) draw B2 = 1 second level bootstrap resample

X∗∗nb and, (iii) compute θ̂∗∗b . After all bootstrapping operations are complete, we have two

series of bootstrap iterates, θ̂∗b and θ̂∗∗b for b = 1, · · · , B1. The first level bootstrap bias β(µ̂)
is estimated in a way similar to that given in (3). An estimate γ̂DFA of the proposed fast
double bootstrap approximation γDFA is computed as

γ̂FDA = β̂ +
1

B1

B1∑

b=1

(
θ̂∗∗b − θ̂∗b

)
. (20)
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This algorithm requires only 2B1 + 1 visits to the statistic of interest θµ. Therefore the
computational cost is reduced from order O(B1B2) in the double bootstrap to O(B1) for the
proposed fast approximation.

5 Monte Carlo Analysis

5.1 The Monte Carlo Environment

Consider the simple linear IV model of Guggenberger (2008)

yi = θxi + εi, (21)

xi = ziπ + vi i = 1, ..., n. (22)

For simplicity, we assume that the endogenous variable in the left-hand side of (21) is a scalar.
The scalar regressor xi is endogenous and accepts the reduced form in (22). The K − vector
zi represents the predetermined/exogenous instruments which satisfies exogeneity condition,
E(ziεi) = 0. The random variables zi is IID normally distributed random variables N(0, IK),

and (ε, vi) are IID N(0,Ω) with Ω =

(
1 ρ
ρ 1

)
.

Two parameters are of special interest in this model and will affect the bias of the IV
estimator. First, the correlation parameter ρ which determines the degree of endogeneity
of xi. Secondly, the strength of the instruments π which measure the relevance of the
instruments. If the latter is zero, the IV estimator is neither consistent nor asymptotically
normal. To control for this parameter we use the R2 from the first stage regression which is
equal to, R2 = π′π

1+π′π
.

Assuming that all the instruments have the same strength η (See, Guggenberger (2008))
or alternatively if the total explanatory power of the first stage regression is equally assigned
among πj = η, j = 1 : K (Flores-Lagunes (2007)), the R2 is thus related to the relevance

of the instruments and to the number of instruments in the simple equation R2 = K.η2

1+K.η2
.

The IV estimator θ̂ = (x′Pzx)−1x′Pzy, where Pz = z(z′z)−1z′, is consistent. The finite

sample bias of θ̂ is dependent on ρ, π and K as follows, bias(θ̂) = (K−2).ρ
n.(π′z′zπ)−1 . The data

are simulated to represent cases of weak or less relevant instruments (low R2) and cases of
high endogeneity of xi (high ρ). The degree of overidentification (number of instruments K)
also plays a role in the tradeoff between bias and efficiency for IV estimation. We therefore
consider experiments with the following combinations of the in the DGP : n ∈ {50, 200},
R2 ∈ {0.01, 0.15, 0.25}, K ∈ {5, 10} and ρ ∈ {0.25, 0.50, 0.85}. In all experiments, the true
DGP µ0 is characterized by θ = 0.

5.2 Monte Carlo Results

Because of the increased computational time due to the nested sampling, we limit the number
of Monte Carlo simulations to 10, 000 and the number of bootstrap iterations to B1 = B2 =
499 (considered as reasonable in Davidson and MacKinnon (2007)).
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Tables I-III report the summary statistics of the empirical distributions of the instru-
mental variable estimator θ̂, the bootstrap bias corrected estimator θ̂bc, the double bootstrap
bias corrected estimator θ̂dbc, and the bias corrected estimator using the fast approximation
θ̂FDA. In particular, the columns show the sample mean, the sample median (Med), the
root mean square error RMSE, and the mean absolute error MAE. Figure 1 plots the kernel
density estimates of the empirical distributions of the bootstrap estimators for selected DGP
parametrization.

The results for the linear IV estimator θ̂ are conventional. As the degree of overidenti-
fication increases with the number od instruments moving from K = 5 to K = 10, there is
an increase in the mean and median bias while the RMSE goes down. Increasing the sample
size results in considerable decrease in the bias and increase in efficiency as can be seen when
comparing Table II to Table III. If the instruments are strong (high R2), the presence of

endogeneity is not a disaster even for high values of ρ. In Table I for example, the bias of θ̂
increased from 0.04 to 0.07 when ρ increased from 0.25 to 0.85

The statistical properties of the single bias corrected estimator θ̂bc and the double boot-
strap bias corrected estimator θ̂dbc in tables I-III follow existing predictions in the literature.
For all the DGP configurations with R2 ∈ {0.15, 0.25}, the bias of θ̂dbc is smaller than that

of θ̂bc which in turn is significantly reduced compared to θ̂. In Table II for R2 = 0.25 and
ρ = 0.85, the single bootstrap reduces the bias by 29% while the double bootstrap further
reduces the gap by 59%. These percentage reductions are higher (41% and 85% respectively)
when ρ = 0.25. However, reducing the bias may increase the variance, or even the mean
squared error. Indeed, this is the case in most configurations except for the case of R2 = 0.25
and ρ = 0.85 and K = 10 where the RMSE of θ̂ decreased by 3.8% for n = 50.

This result is not new. Hsu et al. (1986) find that the bias reduction from bootstrapping
the two stage least squares is achieved at the expense if increased variance. MacKinnon and
Smith (1998) argue that reducing the bias may increase the variance and the root mean
squared error of the bias corrected estimator depending on the shape of the bias function
and on the variance of the initial estimator. We conjecture that the shape of the bias
function of the IV estimator depends on the relevance of the instruments and the severity
of the endogeneity problem. In addition, the increased variance may be due to few erratic
bootstrap estimates θ̂∗b and θ̂∗∗b,j. Following Hsu et al. (1986) and Shao (1990), we compute
the adjusted root mean squared error RMSEa by deleting 2.5% from the top and 2.5% from
the bottom of the 5, 000 bias corrected estimates. The results show no significant increase in
the adjusted RMSE for θ̂bc. The mean bias of the double bootstrap estimator θ̂dbc is smaller
than that of the single bootstrap estimator θ̂bc. However, this gain in bias does not offset
the increased RMSE and RMSEa.

The proposed approximation of the double bootstrap bias produces estimators with
higher bias reduction than the single bootstrap for all configurations. This reduction comes
with lower variance than the double bootstrap corrected estimator. The proposed estimator
θ̂FDA has lower mean absolute error MAE and RMSE than θ̂dbc. In addition to reduced bias,
this estimator has lower RMSEa and MAE than the IV estimator θ̂ and the single bootstrap
bias corrected estimator θ̂bc. See for example the underlined results in tables II-III.

9
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The results are even more promising for the proposed approximation when the sample
size is increased from n = 50 to n = 200. Table III shows that for models with relevant
instruments, the proposed bias corrected estimator not only achieves a lower bias than the
single bootstrap but also outperforms the double bootstrap corrected estimator. In Table III
when R2 = 0.25 and ρ = 0.85, θ̂dbc reduces the bias of θ̂ from 0.039 to −0.019 while θ̂FDA
further reduces the bias to 0.003.

Figure 1 provides an overview of the effect of instrument relevance and sample size on the
sampling distributions of the alternative estimators. The plots show that in the presence of
weak instruments (plots with R2 = 0.01), the bias of all estimators is higher, the increase in
the variance of the bootstrap bias corrected estimators is also higher. Increasing the sample
size from n = 50 to n = 200 has little effect on both the bias and the variance unless the
instruments are relevant and the endogeneity is moderate (see Figure 1(c)). In addition, the
evidence from the Monte Carlo suggests that the bootstrap is less effective in reducing the
finite sample bias when the instruments are weak.

6 Conclusion

The theory predicts that iterating the bootstrap principle increases the accuracy of the
bootstrap. This increased accuracy comes at an enormous computational cost. This paper
has presented a new computationally efficient technique for bias correction which removes the
requirement to perform the computationally intensive inner loop of the double bootstrap.
The proposed approximation converges to the theoretical bias adjustment of the double
bootstrap. The new bootstrap bias corrected estimator is effective in reducing the bias of the
single bootstrap and, in the example considered, is more precise than the double bootstrap.
In the linear instrumental variable model, the bias function of the IV estimator depends on
the instruments relevance, the degree of endogeneity and the number of instruments. We
find that the bootstrap as a method to reduce the bias is less effective when the instruments
are weak regardless of the sample size. In the case of weak identification, models with
high degree of endogeneity have lower mean and median bias. This result warrants further
investigation.
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Appendix A: Proof of Corollary 1

We first establish convergence of R
∗
n,B1

(x) to Eµ̂Eµ̂∗ [Rn(X∗∗n, θ(µ̂∗)) + x]:

R
∗
n,B1

(x) = B−11

B1∑

b=1

Rn(X∗∗nl,b , θ(µ̂
∗
b)) + x (23)

Note that x depends only on the DGP µ̂ and therefore can be taken out of the conditional
expectation. By the assumption of IID random draws,

Eµ̂∗R
∗
n,B1

(x) = Eµ̂∗ {Rn(X∗∗nb , θ(µ̂∗b))}+ x,

and the variance

Vµ̂∗R
∗
n,B1

(x) = B−11 Vµ̂∗Rn(X∗∗nb , θ(µ̂∗b))→ 0, as B1 →∞.

Applying the law of large numbers ,

B−11

B1∑

l=1

Rn(X∗∗nl,b , θ(µ̂∗))→ Eµ̂∗Rn(X∗∗nl,b , θ(µ̂
∗
b)) ≡ Eµ̂∗Rn(X∗∗nb , θ(µ̂∗b)) (24)
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as B1 → ∞. Similarly, using the law of large numbers and given that Eµ̂∗Rn(X∗∗nb , θ(µ̂∗b))
are IID random variables,

Eµ̂R
∗
n,B1

(x) = Eµ̂Eµ̂∗R
∗
n,B1

(x)

= B−11

B1∑

b=1

Eµ̂Eµ̂∗Rn(X∗∗nb , θ(µ̂∗b)) + x

= Eµ̂Eµ̂∗ [Rn(X∗∗n, θ(µ̂∗)) + x] .

In addition, given the IID assumption and

Vµ̂R
∗
n,B1

(x) = B−11 Vµ̂Eµ̂∗Rn(X∗∗n, θ(µ̂∗)) <∞,

therefore using the law of large numbers we establish, R
∗
n,B1

(x)→ Eµ̂Eµ̂∗Rn(X∗∗n, θ(µ̂∗))+x

as B1 →∞. Similar result can be established for Rn,B1(x) by using the law of large numbers
and the fact that the random variables Rn(X∗nb , θ(µ̂b)) are IID:

Rn,B1(x)→ Eµ̂ [Rn(X∗n, θ(µ̂∗)) + x] , as B1 →∞.

The fast approximation of the adjustment parameter γFDA satisfies γFDA = R
∗
n,B1

(β(µ̂)).
Solving for γFDA,

γFDA =
1

B1

B1∑

b=1

(θ(µ̂∗∗b )− θ(µ̂∗b)) + β(µ̂) (25)

=

[
θ(µ̂)− 1

B1

B1∑

b=1

θ(µ̂∗b)

]
+

[
1

B1

B1∑

b=1

(θ(µ̂∗∗b )− θ(µ̂∗b))

]
(26)

=

[
1

B1

B1∑

b=1

(θ(µ̂∗∗b )− θ(µ̂∗b))

]
−

[
1

B1

B1∑

b=1

(θ(µ̂∗b)− θ(µ̂))

]
(27)

= R
∗
n,B1

(0)−Rn,B1(0) (28)

→ Eµ̂Eµ̂∗ [Rn(X∗∗n, θ(µ̂∗))]− Eµ̂ [Rn(X∗n, θ(µ̂∗))] (29)

→ γ(µ̂), as B1 →∞. (30)
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Table I: Monte Carlo results (10,000 replications; true θ = 0; number of instruments K = 5;
sample size n = 50). Summary statistics for the distribution of alternative estimators of θ:
the mean, the median (Med), root mean square error (RMSE), adjusted RMSE (RMSEa)
and the mean absolute deviation (MAE).

Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.25, ρ = 0.85 R2 = 0.25, ρ = 0.50 R2 = 0.25, ρ = 0.25

θ̂ 0.07 0.07 0.12 0.12 0.10 0.07 0.07 0.20 0.20 0.16 0.04 0.04 0.22 0.22 0.18

θ̂bc 0.026 0.043 0.14 0.11 0.11 0.02 0.04 0.23 0.19 0.18 0.00 0.02 0.27 0.21 0.20

θ̂dbc -0.02 0.01 0.18 0.13 0.12 -0.03 -0.00 0.29 0.22 0.21 -0.02 -0.01 0.32 0.25 0.24

θ̂FDA 0.01 0.04 0.16 0.12 0.11 0.00 0.03 0.26 0.20 0.18 0.00 0.01 0.28 0.21 0.20
Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.15, ρ = 0.85 R2 = 0.15, ρ = 0.50 R2 = 0.15, ρ = 0.25

θ̂ 0.13 0.14 0.19 0.19 0.16 0.11 0.12 0.25 0.25 0.20 0.07 0.07 0.30 0.30 0.23

θ̂bc 0.09 0.11 0.23 0.18 0.17 0.05 0.07 0.31 0.24 0.23 0.03 0.04 0.41 0.29 0.28

θ̂dbc 0.04 0.08 0.29 0.20 0.20 -0.01 0.03 0.40 0.29 0.28 -0.01 0.02 0.52 0.35 0.34

θ̂FDA 0.06 0.09 0.28 0.19 0.19 0.02 0.06 0.36 0.26 0.25 0.02 0.04 0.48 0.37 0.31
Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.01, ρ = 0.85 R2 = 0.01, ρ = 0.50 R2 = 0.01, ρ = 0.25

θ̂ 0.25 0.25 0.30 0.30 0.26 0.33 0.33 0.50 0.50 0.40 0.23 0.23 0.55 0.55 0.42

θ̂bc 0.24 0.24 0.37 0.31 0.30 0.32 0.32 0.69 0.54 0.51 0.23 0.23 0.84 0.63 0.60

θ̂dbc 0.24 0.24 0.46 0.36 0.34 0.32 0.31 0.92 0.66 0.64 0.24 0.23 1.14 0.82 0.79

θ̂FDA 0.24 0.24 0.44 0.34 0.33 0.32 0.32 0.87 0.62 0.60 0.24 0.23 1.07 0.76 0.73

Table II: Monte Carlo results (10,000 replications; true θ = 0; number of instruments K = 10;
sample size n = 50).

Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.25, ρ = 0.85 R2 = 0.25, ρ = 0.50 R2 = 0.25, ρ = 0.25

θ̂ 0.13 0.13 0.16 0.16 0.14 0.15 0.15 0.22 0.22 0.18 0.08 0.08 0.21 0.21 0.16

θ̂bc 0.09 0.10 0.15 0.13 0.12 0.09 0.11 0.24 0.20 0.19 0.05 0.05 0.25 0.20 0.19

θ̂dbc 0.05 0.07 0.16 0.13 0.13 0.04 0.06 0.29 0.23 0.22 0.01 0.03 0.30 0.24 0.23

θ̂FDA 0.07 0.08 0.15 0.12 0.12 0.07 0.09 0.27 0.23 0.20 0.03 0.04 0.27 0.23 0.21
Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.15, ρ = 0.85 R2 = 0.15, ρ = 0.50 R2 = 0.15, ρ = 0.25

θ̂ 0.16 0.16 0.18 0.18 0.16 0.20 0.21 0.28 0.28 0.23 0.11 0.11 0.25 0.25 0.20

θ̂bc 0.12 0.13 0.18 0.16 0.15 0.15 0.16 0.31 0.27 0.25 0.07 0.07 0.31 0.25 0.24

θ̂dbc 0.09 0.10 0.20 0.16 0.15 0.10 0.12 0.37 0.30 0.29 0.04 0.04 0.39 0.31 0.29

θ̂FDA 0.10 0.11 0.19 0.16 0.15 0.13 0.14 0.34 0.28 0.27 0.05 0.05 0.35 0.28 0.27
Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.01, ρ = 0.85 R2 = 0.01, ρ = 0.50 R2 = 0.01, ρ = 0.25

θ̂ 0.26 0.25 0.28 0.28 0.26 0.33 0.33 0.41 0.41 0.35 0.22 0.22 0.38 0.38 0.30

θ̂bc 0.25 0.25 0.30 0.29 0.26 0.33 0.33 0.49 0.44 0.40 0.21 0.21 0.52 0.43 0.40

θ̂dbc 0.25 0.25 0.34 0.31 0.28 0.32 0.33 0.60 0.50 0.47 0.21 0.21 0.67 0.54 0.51

θ̂FDA 0.25 0.25 0.32 0.30 0.28 0.32 0.33 0.57 0.48 0.45 0.21 0.21 0.63 0.50 0.47
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Table III: Monte Carlo results (10,000 replications; true θ = 0; number of instruments
K = 10; sample size n = 200).

Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.25, ρ = 0.85 R2 = 0.25, ρ = 0.50 R2 = 0.25, ρ = 0.25

θ̂IV 0.04 0.04 0.06 0.06 0.05 0.04 0.05 0.10 0.10 0.08 0.05 0.05 0.16 0.16 0.13

θ̂bc 0.01 0.02 0.06 0.05 0.05 0.01 0.02 0.11 0.09 0.08 0.02 0.03 0.18 0.15 0.14

θ̂dbc -0.02 -0.01 0.08 0.07 0.07 -0.02 -0.01 0.12 0.10 0.10 -0.01 0.00 0.22 0.18 0.17

θ̂FDA 0.00 0.01 0.07 0.06 0.05 0.00 0.01 0.11 0.09 0.09 0.01 0.02 0.20 0.16 0.15
Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE Mean Med RMSE RMSEa MAE
R2 = 0.01, ρ = 0.85 R2 = 0.01, ρ = 0.50 R2 = 0.01, ρ = 0.25

θ̂ 0.23 0.23 0.26 0.26 0.24 0.29 0.30 0.37 0.37 0.32 0.20 0.20 0.35 0.36 0.28

θ̂bc 0.22 0.22 0.28 0.26 0.24 0.27 0.28 0.43 0.38 0.35 0.18 0.18 0.48 0.40 0.37

θ̂dbc 0.21 0.21 0.30 0.27 0.25 0.25 0.26 0.52 0.44 0.41 0.17 0.17 0.62 0.50 0.47

θ̂FDA 0.21 0.22 0.29 0.27 0.25 0.26 0.27 0.49 0.42 0.39 0.18 0.18 0.58 0.46 0.44

Figure 1: Kernel density estimates of the empirical distribution of bootstrap biased corrected
estimators of θ. Monte Carlo experiments: 10,000 replications; θ = 0; )K = 10; n =∈
{50, 200}; ρ ∈ {0.25, 0.50, 0.85}; R2 ∈ {0.01, 0.25}.
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