Applying a CART-based approach for the diagnostics of mass appraisal models

Elena B. Pokryshevskaya
Higher School of Economics

Evgeny A. Antipov
Higher School of Economics

Abstract
In this paper an approach for automatic detection of segments where a regression model significantly underperforms and for detecting segments with systematically under- or overestimated prediction is introduced. This segmentational approach is applicable to various expert systems including, but not limited to, those used for the mass appraisal. The proposed approach may be useful for various regression analysis applications, especially those with strong heteroscedasticity. It helps to reveal segments for which separate models or appraiser assistance are desirable. The segmentational approach has been applied to a mass appraisal model based on the Random Forest algorithm.

Citation: Elena B. Pokryshevskaya and Evgeny A. Antipov, (2011) "Applying a CART-based approach for the diagnostics of mass appraisal models", Economics Bulletin, Vol. 31 no.3 pp. 2521-2528.
Submitted: Jun 15 2011. Published: September 02, 2011.
1. Introduction

According to International Association of Assessing Officers mass appraisal is the process of valuing a group of properties as of a given date using common data, standardized methods, and statistical testing (Eckert 1990). Expert systems for mass appraisal allow determining the taxable value of a real estate object. The growing number and quality of websites with real estate prices and characteristics help researchers to develop formal models for mass appraisal.

Various methods have been used for real estate mass appraisal, among which parametric regression analysis is the traditional choice (Ball 1973, Lentz and Wang 1998, Miller 1982, Laakso 1997, Theriault et al. 2005, Kang and Reichert 1991, McCluskey and Anand 1999). In some studies nonparametric regressions have been applied successfully (e. g., Filho and Bin 2005). Among machine learning methods the most commonly used are neural networks (e. g., Verkooijen 1996, Pace 1995, McCluskey and Anand 1999, Verikas et al. 2002, Worzala et al. 1995, Ge et al. 2003, Curry et al. 2002, Kauko 2003, Kauko et al. 2002, Liu et al. 2006, Selim 2009). At the beginning of 1990s several authors revealed some problems with neural networks (Worzala et al. 1995). For example, the average absolute error varied significantly depending on the algorithm used in different software packages, i. e. results are often unstable (Worzala et al. 1995, Kontrimas and Verikas 2010). On the other hand, Nguyen and Cripps (2001) showed that neural networks are effective in the case of large heterogeneous datasets. Other methods, reported to be effective, include, but are not limited to, k nearest neighbors (McCluskey and Anand 1999), regression trees (Fan et al. 2006) and fuzzy logic techniques (Bagnoli and Smith 1998, Lee et al. 2003, Theriault et al. 2005).

The existing literature pays little attention to model diagnostics. As a rule, aggregated diagnostic indicators (coefficient of determination, mean average percentage error etc.) are used to evaluate model quality, while there are virtually no tools which can be used to reveal problem segments of observations and improve models based on this knowledge. Without such diagnostics, model quality is questionable, since it may give a much higher than average error when objects from particular segments are under consideration. That is why the goal of our study is to suggest a segmentational approach for the diagnostics of mass appraisal models quality.

2. Methodology

2.1. Measures of valuation accuracy

We have chosen the accuracy measures, which allow comparing valuation quality independent of the methodology used and which comply with the existing standards on automated expert systems evaluation.

Average Sales ratio (SR) with a confidence interval

The numerator of the sales ratio for a particular transaction would be the estimated value generated from the model, while the denominator would be the sale price. The 95% confidence interval must overlap 0.9-1.1 range according to international standards (International Association of Assessing Officers 2003). In our study we use bootstrap confidence intervals because the distribution of SR is not normal.
Mean average percentage error (MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{\hat{Y}_i - Y_i}{Y_i} \cdot 100$$, where \(Y_i\) is the observed and \(\hat{Y}_i\) is the predicted value of object \(i\). MAPE is easy to interpret and reflects the accuracy of the model.

Coefficient of dispersion (COD)

COD measures the average percentage deviation of SR from its median value. It is often considered to be the most useful measure of sales ratio’s variability, because its interpretation is not dependent on the normality assumption. In accordance with international standards COD of 5-20% is acceptable (International Association of Assessing Officers 2003).

2.2. A segmentational approach for model accuracy diagnostics

Besides average indicators of prediction accuracy, the homogeneity of valuation quality across different segments is important, especially in the context of mass appraisal. If there are segments in which the predicted values are systematically over- or underestimated, the model cannot be considered satisfactory. This is also true in the case of the segments, where prediction errors are significantly higher than average, which also puts tax payers in unequal position. For problem segments it is reasonable to apply appraiser assisted AVMs, which still simplify experts’ job, but are controlled by them.

Despite active development of statistical methods, there are hardly any universal and easy-to-use approaches to diagnose and correct the heterogeneity of valuation quality. We propose an approach to revealing segments with high and low prediction error in the context of mass appraisal problem.

1. Let \(Y_i\) be the observed market value for object \(i\), \(\hat{Y}_i\) – the value predicted using some data analysis method. Then \(PE_i = \frac{\hat{Y}_i - Y_i}{Y_i} \cdot 100\) is the percentage error of prediction for observation \(i\).

2. On the training sample build the decision tree, using the CART (Classification and regression trees) algorithm (Breiman et al. 1984) with \(PE_i\) as a dependent variable and with all the predictors used for valuation purposes as the explanatory variables. The tree splits the sample into segments, differing by MAPE. We suggest setting a reasonably large minimum number of cases per node (at least several hundred).

3. If the regression tree does not reveal significantly different segments, then either the accuracy of the model may be considered homogeneous or another regression tree algorithm can be tried instead of CART. We do not recommend increasing the significance level (I type error), since in order to transfer our conclusions to the testing sample, we should be confident enough in the regularity of the revealed differences.

4. If the regression tree reveals significantly different segments, then acceptability of MAPE in each segment should be considered. In the case of high MAPE in some segments, appraiser assistance may be required for objects belonging to those segments. Building separate models for different segments may also lead to an increased overall accuracy.

Revealing segments with systematically underestimated and overestimated sales prices requires repeating steps 1 – 4 of the previous procedure using \(SR_i\) instead of \(PE_i\).
It should be noted that the proposed tree-based approach can be used for diagnostics and correction of the prediction quality in various regression problems in the presence of a reasonably large training sample. Instead of a percentage error, an absolute error or squared residuals may be used depending on a researcher’s purpose. The latter case, for instance, gives a tool for heteroscedasticity diagnostics, capable not only of detecting heteroscedasticity of any type, but also of describing the detected segments, which gives our approach a competitive advantage compared to standard econometric tests.

3. Empirical analysis

3.1. Data

The dataset is based on the largest in Saint-Petersburg (Russia) real estate catalog “Real estate bulletin” (www.bn.ru). The content of the bulletin is moderated by its publisher, which increases the data quality.

Our initial sample consisted of 2848 two-room apartments, sold in the spring of 2010 in Saint-Petersburg. In order to record prices closest to the actual sales prices, we collected the last values, which appeared in the bulletin for each object. We have noticed, however, that these values are usually equal to the initial prices. A scatter diagram (“total area - apartment price”) helped us to exclude three likely outliers. Thus the empirical analysis is based on the objects with the area of up to 160 m2 and the price of up to 30 million rubles. Such a range is still very wide due to the heterogeneity of apartments in the city, which makes the valuation difficult. The final version of the dataset was split into the training sample (2695 observations) and the testing sample (150 observations).

Each object is characterized by the following variables:

1. Apartment price in thousand rubles (price)
2. Price per square meter in thousand rubles (price_per_meter)
3. Total area of the apartment in square meters (total_area)
4. Living area in square meters (living_area)
5. The area of the first room in square meters (room1_area)
6. The area of the second room in square meters (room2_area)
7. Herfindahl index for room areas:
 \[\text{inequality1} = \left(\frac{\text{room1}_{area}}{\text{living}_{area}} \right) \cdot 100 + \left(\frac{\text{room2}_{area}}{\text{living}_{area}} \right) \cdot 100 \]
8. Absolute percentage difference between room areas:
 \[\text{inequality2} = \frac{\max(\text{room1}_{area},\text{room2}_{area}) - \min(\text{room1}_{area},\text{room2}_{area})}{\min(\text{room1}_{area},\text{room2}_{area})} \cdot 100 \]
9. Kitchen area in square meters (kitchen_area)
10. Bathroom unit type (bathroom_unit): 1="no bath/shower in the kitchen/bath in the kitchen/shower only"; 2="the bathroom unit including the toilet"; 3="the toilet separate from the bathroom"; 4="2 or more bathroom units"
11. Telephone availability (telephone): 0="not available"; 1="available"
12. The floor, on which the apartment is situated (floor)
13. Number of floors in the house (number_of_floors)
14. House type (house_type): 24 categories
15. Distance from the house to the nearest underground station (distance_from_underground): 0="1-5 minutes on foot"; 1="6-10 minutes on foot"; 2="11-15 minutes on foot or 1-5 minutes by bus"; 3="16-20 minutes on foot or 6-10
minutes by bus"; 4="21-25 minutes on foot or 11-15 minutes by bus"; 5="16-20 minutes by bus"; 6="more than 20 minutes by bus"

16. Time to the city center by underground (time_to_downtown)

17. District (district): 13 categories

Descriptive statistics for quantitative variables are given in Table I.

<table>
<thead>
<tr>
<th></th>
<th>Number of valid cases</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Coefficient of variation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>2695</td>
<td>1500.0</td>
<td>26500.0</td>
<td>4826.4</td>
<td>2456.1</td>
<td>50.9</td>
</tr>
<tr>
<td>price_per_meter</td>
<td>2695</td>
<td>29.4</td>
<td>375.0</td>
<td>82.1</td>
<td>26.7</td>
<td>32.5</td>
</tr>
<tr>
<td>total_area</td>
<td>2695</td>
<td>22.0</td>
<td>156.0</td>
<td>57.7</td>
<td>13.9</td>
<td>24.0</td>
</tr>
<tr>
<td>living_area</td>
<td>1697</td>
<td>15.0</td>
<td>75.0</td>
<td>33.0</td>
<td>6.3</td>
<td>19.1</td>
</tr>
<tr>
<td>room1_area</td>
<td>2020</td>
<td>7.0</td>
<td>75.0</td>
<td>19.1</td>
<td>6.1</td>
<td>32.1</td>
</tr>
<tr>
<td>room2_area</td>
<td>1905</td>
<td>6.0</td>
<td>48.0</td>
<td>14.8</td>
<td>4.1</td>
<td>27.9</td>
</tr>
<tr>
<td>kitchen_area</td>
<td>1623</td>
<td>4.0</td>
<td>50.0</td>
<td>10.6</td>
<td>5.0</td>
<td>47.7</td>
</tr>
<tr>
<td>floor</td>
<td>2652</td>
<td>1.0</td>
<td>25.0</td>
<td>5.1</td>
<td>3.9</td>
<td>75.4</td>
</tr>
<tr>
<td>number_of_floors</td>
<td>2688</td>
<td>2.0</td>
<td>27.0</td>
<td>9.5</td>
<td>5.3</td>
<td>56.4</td>
</tr>
<tr>
<td>time_to_downtown</td>
<td>2695</td>
<td>0.0</td>
<td>6.0</td>
<td>1.6</td>
<td>1.3</td>
<td>82.6</td>
</tr>
</tbody>
</table>

3.2. The diagnostics of the Random forest model accuracy using the segmentational approach

Using the indicators COD and MAPE, it is difficult to give recommendations on how to increase accuracy homogeneity across different segments and decrease prediction error. That is why we use the approach for homogeneity of model accuracy diagnostics introduced in Subsection 2.2. Using this approach we will make the diagnostics of Random forest predictions (we use Random Forest predictions because they appeared to be the best in our comparison study, the results of which are not going to be covered in this paper).

To begin with, we build a regression tree that will allow revealing apartment segments which differ the most in the average MAPE. As we want to pick out the most stable segments, we set the minimum number of observations in a node equal to 300.

The diagnostics (see Table II) showed that the pooled model based on all observations of the training sample gives an average error of less than 9.8% for apartments with area of below 61.5 sq. meters, while MAPE is 19.4% for apartments with greater area, among which MAPE for districts 4, 5, 6, 9, 11, 12 is 12.9% and for other districts – 23.6%. Hence we can recommend the correction of valuations in the third segment with the help of experts or by developing another model for this segment. Our experience showed that the separate model building for this segment did not decrease the error. This can be partly explained by the fact that transactions of relatively big apartments in these districts have many features that are hard to take into account in mass appraisal models: therefore, the error can hardly be significantly reduced by applying some other method without adding other variables to the dataset. The segment that requires special attention accounts to approximately 18% of the market. It is easy to ascertain that the revealed regularity is stable and the differences among the obtained segments appear on the test sample, as well as on the training sample.
Table II

Segments with different MAPE revealed by CART algorithm

<table>
<thead>
<tr>
<th>Segment number</th>
<th>Segment description</th>
<th>MAPE (training sample)</th>
<th>MAPE (test sample)</th>
<th>% of the market (training sample)</th>
<th>% of the market (test sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total area ≤ 61.5</td>
<td>9.783</td>
<td>12.364</td>
<td>69.8</td>
<td>69.3</td>
</tr>
<tr>
<td>2</td>
<td>Total area > 61.5</td>
<td>19.401</td>
<td>20.498</td>
<td>30.2</td>
<td>30.7</td>
</tr>
<tr>
<td>3</td>
<td>Total area > 61.5</td>
<td>12.852</td>
<td>14.423</td>
<td>11.9</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>and districts 4, 5, 6, 9, 11, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total area > 61.5</td>
<td>23.643</td>
<td>23.438</td>
<td>18.3</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>and districts 1, 2, 3, 7, 8, 10, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total sample</td>
<td>12.688</td>
<td>14.859</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

In order to verify if there are segments with systematically under- and overvalued objects, we build a similar tree with SR as a dependent variable (see Table III). As a result of our analysis, 2 segments were revealed that are likely to systematically overestimate the predicted price compared to real sales prices (SR for one of the segments is 1.018, for the other – 1.073).

Table III

Segments with different SR revealed by CART algorithm (training sample)

<table>
<thead>
<tr>
<th>Segment number</th>
<th>Segment description</th>
<th>SR</th>
<th>% of the market</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Districts 3, 4, 5, 6, 8, 9, 11, 12</td>
<td>1.018</td>
<td>68.5</td>
</tr>
<tr>
<td>2</td>
<td>Districts 1, 2, 7, 10, 13</td>
<td>1.073</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Total sample</td>
<td>1.035</td>
<td>100</td>
</tr>
</tbody>
</table>

4. Conclusion and future research

In our study we have proposed and applied the segmentation approach to model accuracy diagnostics that, in contrast to a number of widely used integral indicators, allows not only to evaluate the overall quality of a model, but to pick out the market segments which differ the most in the average MAPE and to detect segments with systematically under- and overvalued predictions. The proposed approach may be useful for various regression analysis applications, especially those with strong heteroscedasticity.

A deeper diagnostics using the introduced technique has been conducted for the Random forest model built using Saint-Petersburg residential apartments dataset. The diagnostics showed that the pooled model based on all observations of the training sample gives an average error of less than 9.8% for apartments with area under 61.5 sq. meters, while MAPE is 19.4% for apartments with greater area, among which MAPE for districts 4, 5, 6, 9, 11, 12 is 12.9% and for other districts – 23.6%. Hence we can recommend the correction of valuations in the problem segment with the help of experts or by developing another model for this segment. The diagnostics of systematically under- and overestimated values revealed the segments, where systematic overestimation of the predicted price compared to real sales prices is likely.

The diagnostic approach described in the paper warns an expert system user against relying on automatic predictions made for particular segments of real estate market, but does
not tell exactly whether predictions for underperforming segments can be improved using some other statistical tools or not. In our future research we plan to suggest techniques for improving predictions based on preliminary segmentational diagnostics.

References

