
     

 

 

  

  

Volume 31, Issue 3 

  

Semi-endogenous growth when population is decreasing 

  

 
 

Thomas Christiaans  
FOM University of Applied Sciences 

Abstract 

The paper analyzes the effect of a negative population growth rate on per capita income growth using a simple model 
of semi-endogenous growth. It is shown that there is a non-monotonous relationship between population growth rates 
and long-run per capita income growth rates. Compared to the case of positive population growth the dynamics are 
richer and depend on the rate of depreciation. Semi-endogenous growth becomes partly endogenous.
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1 Introduction

Following a long history of increasing population nowadays more and more countries experi-

ence a decline of their populations or at least have growth rates of population near zero (cf. e.g.

United Nations, Department of Economic and Social Affairs, Population Division, 2007, Table

A.8). The theory of economic growth is nevertheless mostly concerned with non-negative pop-

ulation growth rates. There are only a few theoretical papers that consider negative population

growth rates. Samuelson (1975) was the first to discover that a steady state will in general not

exist unless the saving rate is also negative. Ritschl (1985) gives further references and discusses

the instability of Samuleson’s steady state, which he ascribes to the shape of the saving function.

He then shows that a stable steady state exists in case of a special saving function dependent

on profits. While Ritschl (1985) uses the standard Solow (1956) model in its Cobb-Douglas form,

Ferrara (2011) has recently analyzed the Rebelo (1991) AK-model of endogenous growth in case

of negative population growth.

To the best of my knowledge the case of semi-endogenous growth with negative population

growth has not been considered up to now. As it is well known that the long-run per capita in-

come growth rates in semi-endogenous growth models usually are proportional to the growth

rate of population (Jones, 1995), this case nevertheless seems to be the most interesting. More-

over, models of semi-endogenous growth need less knife-edge conditions than endogenous

growth models and they do not involve scale effects.1 The present paper analyzes the dynamics

of a simple semi-endogenous growth model under the assumption of a constant positive saving

rate. Among the main results is that there is a non-monotonous relationship between popula-

tion growth rates and long-run per capita income growth rates. In particular, there is a region

of negative population growth rates that lead to negative per capita income growth. For very

negative rates of population growth, per capita income growth becomes positive. Compared to

the case of positive population growth the dynamics are richer and depend on the rate of depre-

ciation. In a particular sense to be specified later on growth becomes endogenous in a standard

semi-endogenous growth model.

2 A simple model of semi-endogenous growth

2.1 Positive population growth

This section briefly reviews a simple model of semi-endogenous growth with positive popula-

tion growth (the model is part of the two-sector model in Christiaans, 2008). Each of a large

number of completely identical firms j is assumed to use labor L j and capital K j to produce its

output Y j according to the Cobb-Douglas production function

Y j = K α
j (K β/(1−α)L j )1−α, 0 <α< 1, 0 ≤β< 1, α+β< 1.

1Scale effects appear in endogenous growth models such as Romer’s (1990) seminal contribution, where an

increase in the size of an economy permanently increases its long-run per capita income growth rate. The elim-

ination of this scale effect led Jones (1995) to the formulation of a non-scale model in which long-run per capita

growth rates do not depend on population size but on its growth rate. In the absence of particular knife-edge

conditions, growth in non-scale models is semi-endogenous, that is, the long-run growth rates are independent of

policy instruments (cf. Christiaans, 2004).
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The aggregate quantities are given by L =

∑

j L j , K =

∑

j K j , and Y =

∑

j Y j . The presence of the

aggregate capital stock K implies labor-augmenting technical progress akin to the learning by

doing respectively learning by investment formulation of Sheshinski (1967) or the endogenous

growth model of Romer (1986). Notice that the exponent of K , β/(1−α), is smaller than one

due to the assumption that α+β< 1. If 1−α−β= 0, the model would involve scale-effects and

endogenous growth (cf. Jones, 1999; Christiaans, 2004). Although the individual production

functions will not be used in the sequel, they are discussed here in order to emphasize that an

external effect of learning by investment is assumed. If learning was internal to firms, perfect

competition would be impossible.2

Under perfect competition, the individual production functions j can be aggregated to yield

an aggregate production function:3

Y = K α+βL1−α, 0 <α< 1, 0 ≤β< 1, α+β< 1. (1)

For the sake of simplicity L shall equal the population. If β = 0, the model reduces to the

Solow model in Cobb-Douglas form as a special case. If β > 0 and 0 < α+β < 1, growth is

semi-endogenous.

Dividing the production function by Lγ yields the scale adjusted per capita income y =

Y /Lγ:4

y = kα+β, where k = K /Lγ and γ=

1−α

1−α−β

Observe that γ> 1 if β> 0 and γ= 1 if β= 0. Using the scale adjusted per capita income and the

scale adjusted capital intensity k is reasonable because these variables are constant in long-run

equilibrium [cf. the analysis of equation (2)].

The short-run equilibrium requires that gross investment I equals gross saving sY , that is

I = sY , where s is the constant saving rate. Net investment equals the increase in the capital

stock: K̇ = I −δK , where δ is the rate of depreciation. It follows from K̇ = sY −δK that the

growth rate of capital gK is gK = K̇ /K = sY /K − δ. The growth rate of population is gL = n.

Logarithmical differentiation of the scale adjusted capital intensity k = K /Lγ with respect to

2All semi-endogenous growth models of closed economies display a similar long-run behavior of growth rates,

independent of the particular engine of growth. As an example it is shown in Christiaans (2003, Appendix E) that

an R&D-driven growth model yields very similar dynamics to the learning by doing approach followed here.
3Varying a proof of Sargent (1987, p. 10) for constant returns to scale without externalities, rewrite the individ-

ual production function as Y j = K βK α
j

L1−α
j

= K β(K j /L j )αL j . Since K β is an external effect, the ratio of marginal

productivities is just [(1−α)/α](K j /L j ). Under perfect competition on the factor markets this ratio must equal the

ratio of factor prices, which is the same for all firms. All firms therefore choose the same capital-labor ratio which

hence must equal the aggregate capital-labor ratio, K /L. Substituting this result into the individual production

functions and aggregating yields

Y =

∑

j

Y j =
∑

j

K β(K /L)αL j = K β(K /L)α
∑

j

L j = K β(K /L)αL = K α+βL1−α

4To prove this result notice that

Y

Lγ
= K α+β

·

L1−α

Lγ
=

(

K

Lγ

)α+β

·

L(α+β)γL1−α

Lγ
= kα+β

·L(α+β−1)γ+1−α

and (α+β−1)γ+1−α= 0 according to the definition of γ.
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time yields gk = k̇/k = gK −γgL = sY /K −δ−γn. Multiplying by k = K /Lγ leads to

k̇ = s
Y

K

K

Lγ
− (δ+γn)

K

Lγ
= s

Y

Lγ
− (δ+γn)k,

or, using Y /Lγ
= kα+β,

k̇ = skα+β
− (δ+γn)k. (2)

If β = 0, this is Solow’s fundamental growth equation in case of a Cobb-Douglas production

function.

The analysis of equation (2) in case of β= 0 is well known and carries completely over to the

case where β > 0 and 0 < α+β < 1. It is therefore not repeated here. In summary, there exists

a unique long-run equilibrium k̂ > 0 that is globally asymptotically stable for all initial values

k > 0. As is usual in a steady state or long-run equilibrium, all growth rates are constant there.

For the constancy of k implies gk = gK −γn = 0 and therefore gK = γn. Since gK = sY /K −δ, it

follows that Y /K must be constant, too. This implies

gY = gK = γn. (3)

The convergence to the steady state implies that it is reasonable to call the rates in (3) the long-

run growth rates. Per capita growth follows from gY /L = gY −n:

gY /L = (γ−1)n (4)

This result is well known for semi-endogenous growth models. As γ− 1 > 0 if β > 0, it seems

to imply that long-run per capita income growth rates are positive if n > 0, zero if n = 0, and

negative if n < 0. It will be shown in the next section, however, that the final statement is only

valid as long as n is not too negative.

2.2 Negative population growth and δ+γn ≤ 0

The long-run equilibrium condition k̇ = skα+β
− (δ+γn)k = 0 in case of δ+γn ≤ 0 can only be

met for a positive k if the saving rate is s ≤ 0. As Ritschl (1985) has shown for the Solow model,

the equilibrium is unstable in this case. As actual saving rates are positive in most developed

countries even if their population declines, a positive saving rate appears to be the more inter-

esting case, however.

Figure 1 shows the dynamics of the model for δ+γn < 0 and s > 0. As skα+β and (δ+γn)k do

not intersect in the upper part of the figure except for k = 0, a long-run equilibrium with positive

scale adjusted capital intensity does not exist. According to (2), k̇ is the difference between the

two curves shown in the upper part of figure 1. Thus, the lower part of the figure shows that

k̇ > 0 for all k > 0 and k continues to increase for ever. While there is no finite steady state, the

economy can be said to approach an asymptotic steady state because the growth rates will be

shown to approach constants as k →∞.

The growth rate of per capita income Y /L follows from logarithmic differentiation of Y /L =

K α+βL−α as

gY − gL = (α+β)gK −αn = (α+β)(sY /K −δ)−αn.
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k

k̇

k
(δ+γn)k

skα+β

Figure 1. The neoclassical growth model for 0 <α+β< 1, s > 0 and δ+γn < 0

Using sY /K = s y/k = skα+β/k = skα+β−1 yields

gY /L = (α+β)skα+β−1
− (α+β)δ−αn (5)

Since figure 1 shows that k →∞ as time approaches infinity one gets the constant per capita

growth rate in the asymptotic steady state

gY /L =−(α+β)δ−αn (6)

This rate is positive if

n <−

α+β

α
δ,

while the assumption δ+γn < 0 implies that

n <−

δ

γ
=−

1−α−β

1−α
δ.

Observe that−(α+β)/α<−(1−α−β)/(1−α). These results imply an astonishing non-monotonous

dependency of the long-run per capita income growth rate on n, shown in figure 2.

n

gY /L

−
α+β
α δ −

δ
γ

Figure 2. Dependency of long-run per capita income growth rates on n

As long as δ+γn > 0, that is if −δ/γ < n ≤ 0, the analysis in the preceding section leading

to (4) is valid and gY /L = (γ−1)n < 0 if n < 0. The economic reasoning underlying this result is
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that a steady state with a constant value of k = K /Lγ exists where K decreases faster than L (if

γ> 1) in order to keep k constant. Thus, per capita income decreases. If, however, γn ≤−δ, the

steady state ceases to exist and the long-run growth rate is gY /L = −(α+β)δ−αn according to

(6).5 Both K and L decrease. Ceteris paribus, the decrease in K implies a smaller income per

capita while the decrease in L implies a higher income per capita. As long as αn > −(α+β)δ,

the detrimental effect −(α+β)δ of a decreasing capital stock dominates the advantageous effect

αn of a decreasing population and the per capita income growth rate is negative. This rate

becomes positive, however, if αn < −(α+β)δ, since the advantageous population effect then

dominates the detrimental capital effect. The growth rate of population must be very negative

for this latter result as it must overcompensate the depreciation of capital that even involves an

externality measured by β. Growth continues to be semi-endogenous in any case since the

long-run growth rates do not depend on the saving rate but only on exogenous production

parameters and population growth.

It should be observed that it is a positive rate of depreciation that makes the dynamics in-

teresting. In case of positive population growth δ can often be neglected as it does not change

anything substantial concerning the long-run dynamics. In the present case, however, δ = 0

would imply that the two numbers in figure 2 are both zero and the kink in the diagram would

be at the origin. A region of negative per capita growth rates would not exist.6

As has been noted before, the Cobb-Douglas-Solow model is the special case where β = 0.

Setting β = 0 in the computed growth rates in (4) and (6) and in the numbers in figure 2 yields

figure 3. Notice that per capita income growth is always zero if n ≥ −δ and positive if n < −δ.

The semi-endogenous case therefore yields much more plausible dynamics.

n

gY /L

−δ

Figure 3. Dependency of long-run per capita income growth rates on n for β= 0

Figures 2 and 3 are concerned with the asymptotic steady state. It should be recalled, how-

ever, that a finite steady state does not exist and that such an asymptotic steady state will never

be reached.7 The per capita growth rate off of the steady state has been calculated in (5). For

the case where n < 0 and δ+γn ≤ 0 the asymptotic steady state is always infinitely far away. The

growth rate provided in (5) is therefore the reasonable description of long-run growth in this

case. In this sense, semi-endogenous growth becomes endogenous because this rate depends

on the saving rate s. By increasing its saving rate the economy is able to increase its long-run

per capita income growth.

5Observe that the growth rates in (4) and (6) both equal gY /L =−
β

1−αδ if n =−δ/γ.
6The importance of the rate of depreciation in case of negative population growth is also emphasized by Ferrara

(2011).
7Even a finite steady state at some k̂ will not be reached in finite time if the economy starts off of the long-run

equilibrium. However, it is always possible to determine the finite time in which the economy puts aside say one

half of the way to the steady state. In contrast, an asymptotic steady state is always infinitely far away.
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3 Conclusion

This paper analyzes negative population growth rates and adds to existing results on the Solow

model and the AK-model by considering a simple but typical model of semi-endogenous growth.

The results are astonishing as per capita income growth rates turn out to vary in a non-mono-

tonous way with population growth rates. It also shows that depreciation is important as it

implies that there is a region of negative per capita income growth rates that will be relevant

unless the population growth rates are very negative.
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