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Abstract

We extend the finite automata approach to evaluate complexity of strategies in iterative adjustment processes such as
auctions. Intuitively, a strategy's complexity is equal to the number of different contingencies in which qualitatively
different behaviors are prescribed. Complexity may explain bidder choice of strategies in multi-unit iterative auctions.
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1. Motivation and approach

Open iterative adjustment processes, such as multi-object ascending auctions, are
often argued to have an advantage over their sealed-bid analogs in terms of allocative
efficiency, and sometimes revenue raising properties as well (Milgrom 2000). Yet, these
auctions may be also prone to efficiency-reducing behaviors, such as bidder collusion
(Cramton 1988), jump bidding (Isaac et al. 2007), or demand reduction (Kagel and
Levin 2001). Understanding bidder choice of strategies in iterative auctions is therefore
important.

One explanation for bidder choice of strategies is strategy complexity. Experimental
evidence indicates that people favor less complex choices in many settings (Sonsino et al.
2002). We suggest a way to evaluate complexity of strategies in iterative auctions and
show that competitive bid-according-to-value strategies are simple, which may make
them focal. Other strategies, such as collusion, are more complex, but may be still
adopted by bounded-complexity bidders in relatively simple settings.

There are many aspects to strategy complexity in auctions, including computational
complexity (Cramton et al. 2006), communication complexity (Grigorieva et al. 2006)
and complexity of learning optimal strategies. We focus on complexity of implement-
ing strategies, and extend the finite automata approach previously applied to repeated
games (Abreu and Rubinstein 1988; Kalai and Stanford 1988) to iterative auctions.
Whereas most of the existing research on strategy complexity is constrained to finite
action spaces and considers repeated settings,! we extend the finite automata approach
to admit a continuum of actions (bids), and to allow bids to depend on the current
auction prices. This is done by measuring strategy complexity by the number of dis-
tinct bidding rules, or bidding functions, that a bidder may use to determine bids given
current auction prices. Intuitively, a strategy’s complexity is equal the number of dif-
ferent contingencies in which qualitatively different behaviors are prescribed. We illus-
trate by comparing complexities of competitive and collusive strategies in a multi-object
ascending-price auction. The note is largely exploratory in nature.

2. Complexity of multi-object ascending auctions

We discuss a simple case of a multi-object non-combinatorial ascending auction where
bidder valuations are separable across goods. Extensions to auctions allowing for pack-
age bidding and other potential applications are discussed at the end of this note.

2.1 The model

Let K = {1,..,k} be the set of objects for sale, and N = {1,..,n} be the set of
bidders. For each bidder i € N, let v; = (v;1,...v;) be the vector of his values for the
goods, and assume v; belongs to a compact subset of Rﬁ. The institution is simultaneous
ascending price auction (Brusco and Lopomo 2002), which proceeds in rounds. In each

!Sabourian (2004) and Gale and Sabourian (2005) study complexity of strategies in bargaining
games where some elements of strategy spaces (prices) are continua.
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round ¢ = 1,2, ..., and for each object j € K, each bidder ¢ € N submits a bid b;; > 0;
to be acceptable, the bid has to exceed the current price of the object p;, by at least
a minimum bid increment 6 > 0. (Without loss of generality, we may interpret b;; = 0
as “no bid.”) The price of good j in round ¢, pé, is defined recursively by p} =0, and
P = max{pz-’l, max;cn bﬁ;l}, fort > 2. Let p' = (pt, .., pl.) denote a current price vector,
and let P C R’j be the set of all possible prices. The auction ends when no acceptable
bids are submitted in the current round, and each object is then assigned to the highest
bidder for this object, who pays the current price. Ties are broken randomly.

For simplicity, assume all bids are observable to all bidders.? Bidder i’s behavioral
(pure) strategy for each round ¢ of the auction is a mapping from the previous history
of bids, up to round (¢ — 1), into the set of bids B;, with b; = (b;1, .., by) € B;. Assume
B; = Rk for alli € N, and let B = x_, B;, with b € B denoting a bid profile.

2.2 Measuring complexity

To evaluate strategy complexity in this iterative auction, we build upon the finite
automata approach of the repeated games literature (Abreu and Rubinstein 1988; Kalai
and Stanford 1988), with necessary modifications to accommodate for the features of
iterative processes.

In the complexity literature on repeated games, the players are assumed to use finite
automata (Moore machines) to implement their strategies, and the complexity of a
strategy is measured as the number of states in a player’s machine, with each state
prescribing a distinct action. This approach builds on the precise feature of a repeated
game, that is, that the same stage game with a finite number of actions is played in
every period.

The repeated games approach to measuring complexity is appealing but can not
be adopted without modification to iterative auctions for two reasons. First, as in
the model above, iterative auctions are often modeled with actions (bids) defined on
convex subsets of Euclidean spaces, implying an infinite and uncountable number of
actions in each round. Second, unlike repeated games, iterative processes evolve from
round to round, and the set of acceptable bids changes accordingly. Consider, for
example, a single-unit ascending bid (English) auction, as described above, and take a
simple strategy of bidding the minimal increment above the current price until the latter
reaches the bidder value. Since the bid depends on the current price p, then, according
to the repeated-game approach to measuring complexity, a separate action, and thus a
separate machine state, would have to be assigned to each possible level of p, yielding
an infinite complexity measure. Yet, this value-bidding strategy may be described by a
simple rule: given the current price, the rule prescribes, for each iteration, either to bid
a minimal increment above the outstanding bid, or not to bid at all. Effectively, the
rule partitions the set of all possible action states into only two distinct parts, and we
can say that this strategy has a rule complexity of two.

2A similar modeling framework may be applied to iterative auctions where only current auction
prices and identities of highest bidders are observable. It also applies to both complete and incomplete
information settings regarding bidder values.
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We use the above insight to adopt the finite automaton approach to measure strategy
complexity in iterative processes. Bidders use automata to implement their strategies.
Even though, unlike repeated games, iterative auctions evolve from round to round,
bidders may still apply the same bidding rules at many price levels. We account for this
feature by introducing the notion of a rule state. Whenever the automaton is in a given
rule state, it uses a certain bidding function to determine bids given current auction
prices. Complexity of a strategy is measured by the number of rule states in a bidder’s
automaton.

Formally, a rule automaton for bidder i is a four tuple (Fj, f}, \i, ;). F; is a finite
set of rule states for bidder 4, and f} is the initial rule state. The behavioral function
A : F; x P — B; specifies the bid vector b; that the automaton submits whenever it
is in rule state f;, as a function of the current price vector p. With some abuse of
notation, we identify the rule state f; with the corresponding bidding function f;(p); to
distinguish between different rule states, we require each f;(-) to be continuous in price
p. The function p; : F; x B — F; governs the transition of the automaton from one rule
state to another.

Analogously to the repeated games complexity literature, many bidder strategies in
iterative auctions may be represented by such finite rule automata. Therefore, we can
define the rule complexity of a strategy as the number of rule states in the smallest rule
automaton describing it.

2.3 Illustration: comparing competition and collusion

To illustrate, first consider the rule complexity of competitive bid-according-to-value
(hereafter, value-bidding) strategy in simultaneous ascending-price auction. Take bidder
i € N and assume she only bids the minimum increment § above the price in an attempt
to win an object. Then, for each object j € K, this strategy has two rule states: the
“bidding” state Z-lj, which prescribes b;; = p; +0; and the “non-bidding” state Z-zj, which
prescribes b;; = 0. The automaton is in the bidding state lej for object j whenever
bidder 7 is not the current highest bidder for the object, and p; < v;; —J (this is also the
initial state); it is in the non-bidding state fj otherwise. Since there are two rule states
per object and k objects, and the rule states may change independently across objects,
then the rule complexity is equal to the number of distinct rule state combinations across
objects, 2*.

Figure 1 illustrates a rule automaton for the value-bidding strategy in a single-object
ascending (English) auction.

Observation 1 The rule complezity of the value-bidding strategy in simultaneous k-
object auction is 2, and is increasing in the number of objects for sale. This strategy
15 the least complexr among all bidding strategies that prescribe at least two qualitatively
different actions per object, and allow for bids that are independent across objects.

It is well-known that all bidders playing such competitive value-bidding strategies
constitutes a subgame-perfect Nash equilibrium (or a Perfect Bayesian Equilibrium, if
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bidder values are their private information). We next compare this competitive value-
bidding strategy with the collusive market splitting strategy, which constitutes an alter-
native, higher-payoff equilibrium for bidders in simultaneous ascending auctions (Brusco
and Lopomo 2002). Under the latter, the bidders split the objects among themselves
and buy at minimal (reserve) prices; deviations are deterred by the threat to revert to
competitive bidding. Such collusive trigger-type strategies are more complex than com-
petitive ones, because they include both collusive states and punishment states. Let
a market-splitting strategy prescribe bidder ¢ to submit the minimal bids for the set
K*® C K of her “designated” objects, and not to bid on other objects, unless a deviation
occurs. Hence, there are two collusive rule states: (1) collusive bidding state f!, which
prescribes to bid b;; = § for j € K’, and b;; = 0 for j € K \ K (this is the initial state);
and (2) collusive non-bidding state f2, which prescribes not to bid, b;; = 0 for all j € K
(this is the state in all but the initial round if no deviations are observed). In addition,
there are 2¥ competitive punishment states, that the automaton transitions into if a
deviation occurs. Thus the rule complexity of any trigger-type collusive strategy is at
least 2¥ + 2. Complexity of a collusive strategy may be much higher if collusion calls

for an initial bidding phase where the set of designated objects is determined for each
bidder.

Observation 2 The rule complexity of any trigger-type collusive strategy in simultane-
ous k-object ascending auction is higher than the complexity of the competitive value-
bidding strategy.

3. Discussion

The above analysis indicates that the rule complexity of a strategy in the simultane-
ous auction increases with the number of objects for sale. Further, any collusive strategy
that allows for reversion to competitive bidding is more complex than the competitive
bidding strategy. That is, collusion is more complex than competition.?

Suppose that, due to bounded rationality, bidders can only use strategies not exceed-
ing a certain complexity bound. Our approach may reasonably explain experimentally
observed phenomena that most bidders easily follow the value-bidding strategy in single-
object ascending (English) auction, but may have troubles bidding on multiple objects
in simultaneous multi-object auctions.* Further, it explains why bidders do not always
successfully collude in simultaneous ascending auctions, even when collusive equilibria
exist (Kwasnica and Sherstyuk 2007).

The suggested approach to measuring complexity may be applied to evaluate com-
plexities of other observed strategies of interest, such as jump bidding (Isaac et al.
2007), demand reduction in multi-unit auctions (Kagel and Levin 2001), or late bidding
in hard-close auctions (Ariely et al. 2005). It may also be extended to combinatorial
auctions (Milgrom 2007), where strategies are likely to become much more complex.

3In a repeated game setting, Fershtman and Kalai (1993) show that firm multi-market operations
are more complex than single-market operation, and that collusion between firms is complex.

4Isaac and Schnier (2005) note that in simultaneous multiple good silent auctions, it may be costly
for bidders to switch bidding attention from one object to another.
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The approach has some obvious limitations. As in the repeated game setting, it
ignores complexity issues related to computing and learning optimal strategies, and
concentrates instead on the complexity of implementing them. Gell-Mann (1995) dis-
cusses several general aspects of complexity. Computational complexity of auctions is
analyzed, for example, in Cramton et al. (2006, Part 3). The theories of learning
in games (Fudenberg and Levine 1998) may help explain complexity of learning issues.
Combining the measure of strategic rule complexity with measures of computational and
learning complexity may be a promising avenue in understanding behavior of boundedly
rational bidders.
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