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1 Introduction

European Union Allowances (EUAs) and Certified Emissions Reductions

(CERs) are fungible assets within the European Union Emissions Trad-

ing Scheme. Their properties have been documented by previous literature.

First, Chevallier (2010) analyzes both time series in a vector autoregressive

(VAR), impulse response function (IRF) and cointegrating framework. The

author shows that EUAs and CERs affect each other significantly through

the VAR model, and react quite rapidly to shocks on each other through

the IRF analysis. Most importantly, both price series are found to be coin-

tegrated, with EUAs leading the price discovery process in the long-term

through the vector error-correction mechanism.

Second, Chevallier (2011) studies the time-varying correlations between

the two assets in a Dynamic Conditional Correlation (DCC) GARCH model.

The study confirms the presence of strong ARCH and GARCH effects, and

documents correlations in the range of [0.01;0.90] between EUAs and CERs.

These findings can then be re-used by financial agents to reach optimal risk

management, portfolio selection, and hedging strategies.

Third, Mansanet-Bataller et al. (2011) investigate the price differences

between EUAs and sCERs, and the extent to which financial and indus-

trial operators may benefit from arbitrage strategies by buying sCERs and

selling EUAs (i.e. selling the EUA-sCER spread). The authors show that

the spread is mainly driven by EUA prices and market microstructure vari-

ables, and less importantly by emissions-related fundamental drivers. This

empirical analysis of emissions markets reveals the rational behavior of in-

vestors: profit-maximizing strategies are elaborated given the very unusual

institutional characteristics of emissions markets.

Compared to previous literature, this paper provides the first assessment

of the interactions between EUAs and CERs in a Markov regime-switching

environment. Given the recent changes in the underlying business cyle (i.e.

a conjunction of a financial crisis since late 2007 coupled with a timid eco-

nomic recovery since 2010), this approach may be beneficial to three groups

of agents. On the one hand, academics would benefit from a greater un-

derstanding of how the relationship between EUAs and CERs changes de-

pending on economic activity. This literature has been documented for most

energy markets (including the oil market), but to a lesser extent for the
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carbon market.

On the other hand, regulatory authorities could also be interested in

understanding how the price path of EUAs and CERs evolves during pe-

riods of economic recession/expansion. If the carbon market is to exhibit

clear macroeconomic fundamentals, then the regulator needs to diminish its

intervention by amending the allocation rules for instance.

Finally, analysts, investment bankers and portfolio managers are inter-

ested into the evolution of EUAs and CERs depending on the business cycle.

Based on that information, they can formulate recommendations on buy/sell

strategies, on the creation of new financial products, and on asset allocation

strategies. If EUAs and CERs are found to be counter-cyclical for instance,

then these emissions assets can be included for diversification purposes in a

broad portfolio composed of equities, bonds and commodities.

Our main results highlight significant switches from low-growth to high-

growth periods between the two time series, with the main regime switch

being located in July 2009. Therefore, emissions assets are related to the

underlying business cycle. Besides, EUAs affect CERs during expansions and

recessions, while CERs are found to affect EUAs at statistically significant

levels especially during expansions.

The rest of the paper is structured as follows. Section 2 summarizes the

data used. Section 3 introduces the Markov regime-switching model. Section

4 presents the empirical results. Section 5 briefly concludes.

2 Data

Figure 1 presents the daily time series of EUA Futures prices traded in

Euro/ton of CO2 on the European Climate Exchange (ECX) from March 09,

2007 to April 26, 2011 which corresponds to a sample of 1,066 observations.

The EUA Futures prices are also presented in logreturn transformation in

the bottom panel of Figure 1.

Figure 2 presents the daily time series of CER Futures prices traded in

Euro/ton of CO2 on ECX. The start of the study periods corresponds to

the trading of CER futures allowances on ECX. The CER Futures prices are

also presented in logreturn transformation in the bottom panel of Figure 2.
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3 Regime-switching model

Following Hamilton (1989), time series may be modelled by following differ-

ent processes at different points in time, with the shifts between processes

determined by the outcome of an unobserved Markov chain. In this frame-

work, the presence of multiple regimes can be acknowledged using multivari-

ate models where parameters are made dependent on a hidden state process.

Consider an n-dimensional vector yt ≡ (y1t, . . . , ynt)
′ which is assumed to

follow a VAR(p) with parameters:

yt =µ(st) +

p
∑

i=1

Φi(st)yt−i + ǫt

ǫt ∼ N (0,Σ(st))

(1)

where the parameters for the conditional expectation µ(st) and Φi(st),

i = 1, . . . , p, as well as the variances and covariances of the error terms ǫt in

the matrix Σ(st) all depend upon the state variable st which can assume a

number q of values (corresponding to different regimes). Given initial values

for the regime probabilities, and the conditional mean for each state, the log-

likelihood function can be constructed and maximised numerically to obtain

parameters estimates of the model.

The general idea behind the class of Markov-switching models is that the

parameters and the variance of an autoregressive process depend upon an

unobservable regime variable st ∈ {1, . . . ,M}, which represents the proba-

bility of being in a particular state of the world. A complete description of

the Markov-switching model requires the formulation of a mechanism that

governs the evolution of the stochastic and unobservable regimes on which

the parameters of the autoregression depend. Once a law has been specified

for the states st, the evolution of regimes can be inferred from the data.

Typically, the regime-generating process is an ergodic Markov chain with a

finite number of states defined by the transition probabilities:

pij = Prob(st+1 = j|st = i),

M
∑

j=1

pij = 1 ∀i, j ∈ {1, . . . ,M} (2)
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In such a model, the optimal inference about the unobserved state vari-

able st would take the form of a probability. The transition probabilities

of the Markov-process determines the probability that volatility will switch

to another regime, and thus the expected duration of each regime. We rely

on a constant specification to keep the model parsimonious. Each regime is

thus the realization of a first-order Markov chain with constant transition

probabilities.

By setting S = [1 1], both the autoregressive coefficients and the model’s

variance are switching according to the transition probabilities. Typically,

we set the number of states M equal to 2. Therefore, state M = 1 represents

the ‘high growth’ phase, whereas state M = 2 characterizes the ‘low growth’

phase (for more details, see Hamilton (2008) and references therein). When

M = 1, the growth of the endogenous variable is given by the population

parameter µ1, whereas when M = 2, the growth rate is µ2.

As M rises, it becomes increasingly easy to fit complicated dynamics and

deviations from the normal distribution in the returns (Guidolin and Tim-

mermann (2006)). However, this comes at the cost of having to estimate

more parameters. As Bradley and Jansen (2004) put it, a well-known prob-

lem with any application of nonlinear models is the problem of overfitting.

There is therefore a trade-off between the depth of the economic interpreta-

tion which one would have available with higher degrees for state variables,

and the numerical difficulties which accompany such an effort.

The model is estimated based on Gaussian maximum likelihood with

St = 1, 2. The calculation of the covariance matrix is performed using the

second partial derivatives of the log likelihood function. P is the transition

matrix which controls the probability of a switch from state M = 1 to state

M = 2:

P =

[

p11 p21

p12 p22

]

The sum of each column in P is equal to 1, since they represent the full

probabilities of the process for each state.
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4 Empirical results

4.1 Comments

Results are provided in Table 3. The statistically significant coefficients of

the two means µ show the presence of switches between high-/low-growth

periods. During expansion, output growth per month is equal to 0.21% on

average. The time series is likely to remain in the expansionary phase with

an estimated probability equal to 95%. Regime 1 is assumed to last 19 days

on average. During recession, the average growth rate is equal to -0.29%.

The probability that it will stay in recession is equal to 93%. The average

duration of Regime 2 is 14 days. According to the ergodic probabilities, the

time series would spend 60% (40%) of the time spanned by our data sample

in Regime 1 (Regime 2).

Interestingly, other coefficient estimates suggest that EUAs have several

statistically significant effects on EUAs: during Regime 1 (as φ2 = 0.07

is significant at the 5% level), and during Regime 2 (as φ1 = 0.06 and

φ2 = −0.06 are significant at the 1% level). Therefore, these results confirm

the insights by Chevallier (2010, 2011) concerning the significant impact of

EUAs on CERs, since the EU ETS is the most developed emissions market

in the world to date. Concerning CERs, we can notice that they impact

EUAs essentially during expansionary phases (as φ1 = 0.12 and φ2 = −0.21

are significant at the 5% level).

The associated smoothed and regime probabilities1 are shown in Figures

3 and 4, respectively. They reveal essentially two periods in the carbon

futures markets: a low-growth period during March 2007-June 2009, and

a high-growth period during July 2009-April 2011. The main switch from

regime 2 to regime 1 occurs during July 2009, as the world economies start

to recover from the financial crisis. Therefore, the Markov-switching model

reveals new characteristics about the behaviour of emissions assets.

1The estimation routine generates two by-products in the form of the regime and smooth

probabilities. Recall that the regime probability at time t is the probability that state t

will operate at t, conditional on information available up to t − 1. The other by-product

is the smooth probability, which is the probability of a particular state in operation at

time t conditional on all information in the sample. The smooth probability allows the

researcher to ‘look back’ and observe how regimes have evolved overtime.
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4.2 Diagnostic tests

The upper panel of Table 4 reports the results of three diagnostic tests.

The first is a test of the Markov-switching model against the simple nested

null hypothesis that the data follow a geometric random walk with i.i.d

innovations. Note M the p-value from the LR test:

Prob[LR(q∗)] > M = Prob(χ2
d > M) +

V M (d−1)/2e−M/22−d/2

Γ(d/2)
(3)

where Prob(LR(q∗) > M |H0) is the upper bound critical value, LR

is the likelihood ratio statistic, q∗ is the vector of transition probabilities

(q∗ = argmax LnL(q)|H1) and d is the number of restrictions under the null

hypothesis.

In Table 4, this adjustment produces a LR statistic equal to 26.75. We

reject the random walk at the 0.1 percent level. We conclude that the rela-

tionship is better described by a two-regime Markov-switching model than

by the random walk model.

The second test reported in Table 4 is for symmetry of the Markov tran-

sition matrix, which implies symmetry of the unconditional distribution of

the growth rates. This test examines the maintained hypothesis that p (the

probability of being in a high-growth state or boom) equals q (the probabil-

ity of being in a low-growth state or depression) against the alternative that

p < q. Table 4 reports statistics that are asymptotically standard normal

under the null. We reject the hypothesis of symmetry at the 5% level.

Third, Ang and Bekaert (2002) set out a formal definition of and a test for

regime classification. They argue that a good regime switching model should

be able to classify regimes sharply. Weak regime inference implies that the

regime-switching model cannot successfully distinguish between regimes from

the behavior of the data, and may indicate misspecification. To measure the

quality of regime classification, we therefore use Ang and Bekaert’s (2002)

Regime Classification Measure (RCM) defined for two states as:

RCM = 400 ×
1

T

T
∑

t=1

pt(1 − pt) (4)

where the constant serves to normalize the statistic to be between 0
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and 100, and pt denotes the ex-post smoothed regime probabilities. Good

regime classification is associated with low RCM statistic values. A value of 0

indicates that the two-regime model is able to perfectly discriminate between

regimes, whereas a value of 100 indicates that the two-regime model simply

assigns each regime a 50% chance of occurrence throughout the sample.

Consequently, a value of 50 is often used as a benchmark (see Chan et al.

(2011) for instance).

Adopting this definition to the current context, the RCM 2-State statistic

is equal to 30.45 in Table 4. It is substantially below 50, consistent with the

existence of two regimes. It is very interesting that our estimated Markov-

switching model has classified the two regimes extremely well.

Finally, Table 4 reports the distributional characteristics for the Markov-

switching processes implied by the estimates in Table 3. Compared to Tables

1 and 2, these values demonstrate that the two-regime model we employ

matches quite well the first four central moments of the data. We conclude

that the Markov-switching model produces both the degree of skewness and

the amount of kurtosis that are present in the original data.

5 Conclusion

The main idea behind Markov regime-switching models consists in capturing

the behavior of economic time series with respect to the underlying business

cycle. Since the years 2007 to 2011 have been characterized by periods of

economic growth and recession, it appears interesting to investigate how the

interactions between EUAs and CERs - the two most fungible assets among

emissions markets - evolve in this context.

This paper shows that significant interactions exist between the two mar-

kets, especially during periods of economic recession when the market trends

are destabilised. Besides, EUAs and CERs seem to vary during two main

periods from low-growth to high-growth, with the main regime switch occur-

ing in July 2009 (in the recovery process from the financial crisis). Overall,

the Markov-Switching modelling brings us new insights as to when market

shocks occur, and actually impact the EUA and CER futures price series.

Thefeore, the results presented in this paper can be seen as complementary to

the time-varying correlations between the two markets highlighted recently

by Chevallier (2011).
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Figure 1: EUA Futures Price (top) and logreturn (bottom) forms from March
2007 to April 2011
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Figure 2: CER Futures Price in raw (top) and logreturn (bottom) forms
from March 2007 to April 2011
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Figure 3: Smoothed transition probabilities estimated from the two-regime
Markov-switching VAR for EUAFUTRET and CERFUTRET
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Figure 4: Regime transition probabilities estimated from the two-regime
Markov-switching VAR for EUAFUTRET and CERFUTRET
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Table 1: Descriptive statistics for the EUA ECX futures price

EUAFUT EUAFUTRET

Mean 17.3523 0.0019
Median 15.3800 0.0001

Maximum 29.3300 1.2800
Minimum 8.2000 -2.1800
Std. Dev. 4.4400 0.3902
Skewness 0.5834 -0.4425
Kurtosis 2.2041 5.2558

JB 88.6199 260.5869
Prob. JB 0.0001 0.0001

Observations 1066 1065

Note: EUAFUT stands for the EUA Futures Price, and EUAFUTRET for the

EUA Futures Price in Logreturn form. Std. Dev. is the standard deviation. JB

stands for the Jarque Bera test.

Table 2: Descriptive statistics for the CER ECX futures price

CERFUT CERFUTRET

Mean 14.0934 0.0005
Median 13.3350 0.0001

Maximum 22.8500 1.2300
Minimum 7.4846 -1.3916
Std. Dev. 2.8055 0.2946
Skewness 0.7660 -0.4670
Kurtosis 3.0691 6.2029

JB 104.4680 493.9578
Prob. JB 0.0001 0.0001

Observations 1066 1065

Note: CERFUT stands for the EUA Futures Price, and CERFUTRET for the

EUA Futures Price in Logreturn form. Std. Dev. is the standard deviation. JB

stands for the Jarque Bera test.
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Table 3: Estimation results of the two-regime Markov-switching VAR for
EUAFUTRET and CERFUTRET

Log-likelihood 248.22
µ (Regime 1) 0.0021***

(0.0001)
µ (Regime 2) -0.0029***

(0.0001)

Equation for EUAFUTRET EUAFUTRET CERFUTRET

φ1 (Regime 1) -0.1088 0.1211**
(0.0672) (0.0528)

φ1 (Regime 2) 0.0895 0.1104
(0.0510) (0.0790)

φ2 (Regime 1) 0.0994 -0.2105**
(0.0551) (0.1149)

φ2 (Regime 2) -0.1383* 0.1116
(0.0743) (0.0857)

Equation for CERFUTRET EUAFUTRET CERFUTRET

φ1 (Regime 1) -0.0869 0.1079
(0.0737) (0.0758)

φ1 (Regime 2) 0.0661*** 0.0835**
(0.0265) (0.0484)

φ2 (Regime 1) 0.0704** -0.1230
(0.0340) (0.0963)

φ2 (Regime 2) -0.0602*** -0.0838***
(0.0274) (0.0335)

Standard error (Regime 1) 0.0010
Standard error (Regime 2) 0.0007

Transition Probabilities Matrix Regime 1 Regime 2

Regime 1 0.9500*** 0.0700***
(0.0300) (0.0200)

Regime 2 0.0500*** 0.9300***
(0.0100) (0.0100)

Regime Properties Prob. Duration

Regime 1 59.37 19.05
Regime 2 40.63 14.05

Note: EUAFUTRET stands for the EUA Futures Price in Logreturn
form. CERFUTRET stands for the CER Futures Price in Logreturn form.

Standard errors are in parentheses. ***,**,* denote respectively statistical

significance at the 1%, 5% and 10% levels.
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Table 4: Robustness checks of the two-regime Markov-switching VAR for
EUAFUTRET and CERFUTRET

Markov-switching VAR

LR Statistic 26.758
p-value 0.001

Symmetry test 2.606
p-value 0.021

RCM 2-State 30.4526

Distributional Characteristics EUAFUTRET CERFUTRET

Mean 0.0006 0.0005
Median 0.0004 0.0002

Maximum 1.2120 1.1079
Minimum -2.2942 -1.1096
Std. Dev. 0.3459 0.2226
Skewness -0.4860 -0.4004
Kurtosis 6.3651 5.4188

Note: Distributional characteristics are given for the Markov-switching

processes implied by the estimates in Table 3. EUAFUTRET stands for the

EUA Futures Price in Logreturn form. CERFUTRET stands for the CER

Futures Price in Logreturn form.
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