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1 Introduction

Chevallier (2010) has proposed a linear cointegration exercise between carbon
spot and futures prices, exchangeable under the European Union Emissions
Trading Scheme (EU ETS)1. The author finds a cointegrating relationship
between spot and futures CO2 allowances, with the futures price being the
leader in the long-term relationship. However, by considering a purely linear
model, it is possible that the econometrician is either mis-specifying the
model, or ignoring a valid cointegration relationship.

That is why, in this paper, we apply two nonlinear cointegration models
to the analysis of carbon spot and futures prices. The first model consists in
a straightforward extension of the cointegration methodology by Lütkepohl
et al. (2004) to include an unknown structural break. In our framework,
this model could potentially be useful in order to take into account the 2008
financial crisis.

The second model is based on threshold cointegration, initiated by Balke
and Fomby (1997). Implicit in the definition of cointegration is the idea that
every small deviations from the long-run equilibrium will lead to error correc-
tion mechanisms. Threshold cointegration extends the linear cointegration
case by allowing the adjustment to occur only after the deviation exceeds
some critical threshold. Furthermore, it allows capturing asymmetries in the
adjustment, whereby positive and negative deviations are not corrected in
the same way. To investigate this question, we apply the methodology by
Hansen and Seo (2002) to the time series of carbon spot and futures prices.

The main results of the paper may be summarized as follows: (i) we
highlight the need to resort to nonlinear cointegration techniques when in-
vestigating the relationship between carbon spot and futures prices, and (ii)
the ECX EUA futures contract is confirmed to be the leader in the price
discovery process.

The rest of the paper is structured as follows. Section 2 presents the
data used. Section 3 introduces the VECM with structural shift. Section 4
contains the threshold cointegration model. Section 5 briefly concludes.

2 Data

We study the time-series of carbon spot and futures prices, along with stan-
dard unit root tests.

1One ton of CO2 emitted in the atmosphere is equal to one European Union Allowance
(EUA).
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2.1 Carbon Spot Price

Figure 1 presents the daily time series of EUA Spot prices traded in =C/ton
of CO2 on BlueNext (BNX) from February 26, 2008 to April 26, 2011 which
corresponds to a sample of 819 observations. The start of the study period
corresponds to the trading of CO2 spot allowances valid during Phase II
under the EU ETS2.The EUA Spot prices are also presented in logreturn
transformation in the bottom panel of Figure 1. Descriptive statistics for all
raw time-series and logreturns may be found in Table 1.

2.2 Carbon Futures Price

Figure 2 presents the daily time series of EUA Futures prices traded in =C/ton
of CO2 on the European Climate Exchange (ECX). The start of the study
period corresponds to the trading of CO2 spot allowances on BlueNext, in
order to match the historical data available for the two samples. The EUA
Futures prices are also presented in logreturn transformation in the bottom
panel of Figure 2.

2.3 Unit Root Tests

Based on the Augmented Dickey-Fuller and Phillips-Perron unit root tests,
we check in Table 2 that the time series of carbon spot and futures prices are
non stationary in raw form. This amounts to checking that they are difference
stationary and integrated of order one (i.e. I(1)). The fact that the time
series are integrated of the same order is indeed a pre-requisite condition for
cointegration. Next, we detail the cointegration models.

3 VECM with Structural Shift

In this section, we explore the possibility of wrongly accepting a cointegration
relationship, when some of the underlying time series are contaminated by
a structural break. We first present the procedure for estimating a VECM
with a structural shift in the level of the process, as developed by Lütkepohl
et al. (2004). By doing so, we draw on the notations by Pfaff (2008).

2Phase I spot prices are not considered here, due to their non-reliable behavior (see
Alberola and Chevallier (2009) for more details on the effects of inter-period banking
restrictions on the price pattern of EUA spot prices during 2005-2007).
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3.1 Cointegration Test

Let ~yt be a K× 1 vector process generated by a constant, a linear trend, and
level shift terms3:

~yt = ~µ0 + ~µ1t+ ~δdtτ + ~xt (1)

with dtτ a dummy variable which takes the value of one when t ≥ τ , and
zero otherwise. The shift point τ is unknown, and is expressed as a fixed
fraction of the sample size:

τ = [Tλ], 0 < λ ≤ λ ≤ λ < 1 (2)

where λ and λ define real numbers, and [·] the integer part. Therefore,
the shift cannot occur at the very beginning or the very end of the sample.
The estimation of the structural shift is based on the regressions:

~yt = ~ν0 + ~ν1t+ ~δdtτ + ~A1 ~yt−1 + . . .+ ~A1 ~yt−p + ǫtτ , t = p+ 1, . . . , T (3)

with ~Ai, i = 1, . . . , p the K×K coefficient matrices, and ǫt the spherical
K-dimensional error process. The estimator for the breakpoint is defined as:

τ̂ = argmin
τ∈T

det

(

T
∑

t=p+1

~̂ǫtτ
~̂
ǫ′tτ

)

(4)

with T = [Tλ, Tλ], and ~̂ǫtτ the least squares residuals of Eq. (3). Once
the breakpoint τ̂ has been estimated, the data are adjusted as follows:

~̂xt = ~yt − ~̂µ0 − ~̂µ1t+
~̂
δdtτ̂ (5)

The test statistic writes:

LR(r) = T

N
∑

j=r+1

ln(1 + λ̂j) (6)

with corresponding critical values found in Trenkler (2003).
According to the results in Table 3, we accept the presence of at least one

cointegrating relationship (r = 1) between carbon spot and futures prices
– considered in logarithmic form – when taking explicitly into account a

3Note that Lütkepohl et al. (2004) develop their analysis in the context where ~xt can
be represented as a VAR(p), whose components are at most I(1) and cointegrated with
rank r.
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structural shift in the level of the process. The breakdate is identified in July
2008, i.e. in a context of high uncertainties on the carbon market regarding
the effects of the financial crisis on output and, ultimately, on the demand
by industrials for CO2 allowances (Chevallier (2011)).

3.2 VECM Estimates

Next, we can specify a VECM under the form (Johansen (1988, 1991), Jo-
hansen and Juselius (1990)):

∆Xt = Π1∆Xt−1 + . . .+Πp−1∆Xt−p+1 +ΠpXt−p + ǫt (7)

where the matrices Πi (i = 1, . . . , p) are of size (N×N). All variables are
I(0), except Xt−p which is I(1). For all variables to be I(0), ΠpXt−p needs
to be I(0) as well.

Let Πp = −βα′, where α′ is an (r,N) matrix which contains r cointe-
gration vectors, and β is an (N, r) matrix which contains the weights asso-
ciated with each vector. If there exists r cointegration relationships, then
Rk(Πp) = r. Johansen’s cointegration tests are based on this condition. We
can thus rewrite Eq. (7):

∆Xt = Π1∆Xt−1 + . . .+Πp−1∆Xt−p+1 − βα′Xt−p + ǫt (8)

Table 4 reveals the error correction mechanism, which leads towards the
long-term stationary relationship between carbon spot and futures prices4.
The negative signs of the error-correction coefficient (ECT ) estimates indi-
cate a slow adjustment of short-term deviations to the long-term relationship.
By looking at the size of these coefficients (-0.028 and -0.042 for respectively
the spot and futures variables), we conclude that futures prices are the leader
in the long-term price discovery. We can assert that the ECX EUA futures
contract is more liquid than the BNX EUA spot contract. This may ten-
tatively explain why we identify a leading role for the futures price in the
carbon market.

Besides, the VECM explains both spot and futures price series by their
own lagged values. We show in this setting that, in the long-run, carbon spot
and futures prices move together according to the cointegration relationship
estimated by a relatively simple dynamic repercussion.

In what follows, we take our analysis one step further by investigating
whether this relationship can be considered as asymmetric.

4By combining linearly the short-term variations of the two time series, the vector
error-correction mechanism allows by definition to diminish the fluctuation errors in order
to achieve the cointegrating relationship between both variables.

4

164



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 160-181

4 Threshold Cointegration

First, we present the model used by Hansen and Seo (2002). Second, we run
the threshold cointegration test. Third, we comment the VECM results.

4.1 The Model

Let xt be a p-dimensional I(1) time series which is cointegrated with one
p × 1 cointegrating vector β, with n observations and l as the maximum
lag length. Let wt(β) = β′xt denote the I(0) error-correction term. The
two-regime threshold cointegration model, or nonlinear VECM of order l+1,
takes the form (Hansen and Seo (2002)):

∆xt =

{

A′
1Xt−1(β) + ut, if wt−1(β) ≤ γ

A′
2Xt−1(β) + ut, if wt−1(β) > γ

(9)

with A1 and A2 the coefficient matrices governing the dynamics of the
regimes, ∆ the first-order difference operator, and:

Xt−1(β) = [1 wt−1(β) ∆xt−1 ∆xt−2 , . . . , ∆xt−l]
′ (10)

The nonlinear mechanism depends on deviations from the equilibrium,
above or below the threshold parameter γ. The error ut is assumed to be
a vector martingale difference sequence with finite covariance matrix

∑

=
E(utu

′
t). The notation wt−1(β) and Xt−1(β) indicates that the variables are

evaluated at generic values of β.
In our setting, we have a bivariate system for the carbon spot and futures

prices, and one cointegrating vector. Therefore, we may set one element of
β equal to unity to achieve identification.

Eq(9) allows all coefficients (except β) to switch between the two regimes.
The threshold effect only has content if 0 < P(wt−1(β) ≤ γ) < 1, otherwise
the model simplifies to linear cointegration. Therefore, we assume that:

π0 ≤ P(wt−1(β) ≤ γ) ≤ 1− π0 (11)

with 0 < π0 < 1 a trimming parameter set to π0 = 0.05 (see Andrews
(1993), Andrews and Ploberger (1994)). The model is estimated by maxi-
mum likelihood under the assumption that the errors ut are i.i.d Gaussian.
Let the estimates be denoted by (β̃, Ãi,

˜∑), with ũt the residual vectors.
The threshold model in eq(9) has two regimes, defined by the value of the

error-correction term in relation to some threshold γ. It is conceivable that
the error-correction may occur in one regime only, or that the error-correction
occurs in both regimes but at different speeds of adjustment. Thus, this

5
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approach provides richer insights than the standard linear error-correction
modelling, which assumes the same error-correction mechanism throughout
the whole sample period as in Chevallier (2010).

4.2 Threshold Cointegration Test

Let us test explicitly for the presence of linear vs. threshold cointegration.
Hansen and Seo (2002) suggest to use the LM test statistic proposed by
Davies (1987):

SupLM = sup
γL≤γ≤γU

LM(β̃, γ) (12)

with [γL, γU ] the search region, so that γL is the π0 percentile of w̃t−1 and
γU is the (1 − π0) percentile. β̃ is the null hypothesis estimate of β (lin-
ear cointegration) against the alternative of threshold cointegration. This
means that there is no threshold under the null, so that the model reduces
to a linear VECM. As the function LM(β̃, γ) is non-differentiable in γ, to
implement the maximization defined in eq(12), it is indeed necessary to per-
form a grid evaluation over [γL, γU ]. The LM statistics are computed with
heteroskedasticity-consistent covariance matrix estimates.

To assess the evidence of threshold cointegration, we use the SupLM test
(estimated β) with 300 gridpoints, and the p-values calculated by the para-
metric bootstrap (see Hansen and Seo (2002)) where the true cointegrating
vector is unknown for the complete bivariate specification. Figure 3 shows
the resulting LM statistics computed as a function of γ.

In Table 5, all p-values have been computed with 5,000 simulation repli-
cations. The multivariate LM test points to the presence of threshold coin-
tegration, with a test statistic equal to 67.038. This result provides a strong
rejection of the null of linear cointegration at the 1% significance level.

4.3 Threshold Cointegration Estimates

Next, we estimate and test the two-regime model of threshold cointegration
between the carbon spot and futures prices. To select the lag length, we
find that the AIC and BIC applied to the threshold VECM pick the value of
l = 1. Moreover, we report our results by letting β̃ be estimated.

From the grid search procedure, the model with the lowest value of

log
∣

∣

∣

˜∑(β, γ)
∣

∣

∣
is used to provide the MLE(β̃, γ̃), with the limitation of β

in eq(11). Then, we use the grid-search algorithm5 developed by Hansen

5See the Appendix for more details. We thank a referee for this suggestion.
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and Seo (2002) to obtain the parameter estimates, with MLE(Ã1, Ã2) being
Ã1 = Ã1(β̃, γ̃) and Ã2 = Ã2(β̃, γ̃).

Table 6 reports the parameter estimates, which were obtained by mini-
mizing the likelihood function over a 300× 300 grid on the parameters γ, β.

The estimated threshold is γ̃ = 4.960. The error-correction term is defined
as: wt = LOGSPOTt − 0.053LOGFUTt. The first regime occurs when
LOGSPOTt ≤ 0.053LOGFUTt+4.960. 6.47% of the observations are found
in this regime, which we label the ‘extreme’ regime. The second regime
occurs when LOGSPOTt > 0.053LOGFUTt+4.960. This regime is relevant
to 93.53% of the observations, and may be viewed as the ‘typical’ regime.
This kind of repartition of the data in usual and unusual regimes is consistent
with other studies (see for instance Chevallier (2011)).

As expected, the carbon futures price governs most of the adjustment
from the short-run to the long-run equilibrium of the model: its coeffi-
cients for wt−1 are highly significant (3.730 and -3.873 in the first and second
regimes, respectively). The coefficients on the error-correction term also in-
dicate that the magnitude of the response for carbon futures is two times
greater than the coefficient of the spot price. Therefore, we are able to
confirm our earlier finding that the futures price leads the nonlinear mean-
reverting behavior of the carbon price.

To allow further visual interpretation of the results, the error-correction
mechanism is pictured in Figure 4 by holding other variables constant. It
can be seen the strong error-correction effect for the carbon futures price
(and to a lesser extent for the spot price) on both sides of the estimated
threshold. This finding comes up when we take account of the nonlinearity
in the underlying processes.

5 Conclusion

This paper develops two nonlinear cointegration models - a VECM with
structural shift and a threshold cointegration model - applied to carbon spot
and futures prices. Our results are twofold.

First, in the VECM with structural shift, we observe that the returns
of carbon spot and futures prices correct the deviations to the long-term
equilibrium, with the futures price being the leader in the price discovery.
Besides, we identify a breakpoint in July 2008, which may be related to the
financial crisis and its effects on the carbon market.

Second, we use Hansen and Seo’s (2002) methodology, which points out
the need to consider threshold cointegration models instead of the potentially
mis-specified linear VECM. We find strong error-correction effects for the

7
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carbon futures price. Asymmetry is implied in the sense that the carbon
futures price governs most of the adjustment from the short-run to the long-
run equilibrium of the model above or below the estimated threshold.

Overall, these results extend the previous findings by Chevallier (2010),
who studied this topic with a linear VECM. We show that the null hypothesis
of linear cointegration is rejected in favor of the alternative hypothesis of
threshold cointegration. Besides, we find that the cointegrating relationship
between carbon spot and futures prices is properly modeled by taking into
account the occurrence of structural breaks. A trader in carbon markets
could gain from the paper one central insight: carbon spot and futures prices
are cointegrated, their relationship is mainly driven by the variation of the
futures price, and it is sensitive to the occurrence of various thresholds and
structural breaks6.

6We wish to thank a referee for this comment.
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test 10% 5% 1%
r ≤ 1 3.52 5.42 6.79 10.04
r = 0 53.33 13.78 15.83 19.85

Table 3: Johansen Cointegration Test with Structural Shift

Note: The test displays the Trace Statistic, with linear trend in shift correction. Carbon

spot and futures prices series are taken in logarithmic form.
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Cointegrating Eq:
LOGSPOT (−1) 1.000000

LOGFUT (−1) -0.996687***
(0.048320)

Error Correction: D(LOG(SPOT )) D(LOG(FUT ))
ECT -0.028097*** -0.042401***

(0.004306) (0.004454)

D(LOGSPOT (−1)) -0.276619*** 0.198018***
(0.035693) (0.017965)

D(LOGFUT (−1)) 0.364243*** -0.107441
(0.043359) (0.092130)

C -0.000314*** -0.000219***
(0.00078) (0.00069)

Table 4: Vector Error-Correction Estimates

Note: LOGSPOT (−1) and LOGFUT (−1) stand for the logarithmic transformation of

the carbon spot and futures price variables lagged one period, respectively. CointEq

stands for Cointegrating Equation. ECT refers to the Error-Correction Term.

D(LOGSPOT (−1)) and D(LOGFUT (−1)) stand for the first-difference logarithmic

transformation of the carbon spot and futures price variables lagged one period,

respectively. C refers to the constant. Standard errors in parentheses. ***,**,* denote

respectively statistical significance at the 1%, 5% and 10% levels. The model is

estimated without intercept and without trend in the Cointegrating Equation, with

intercept and no trend in the data (Johansen (1995)).
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Table 5: LM Tests Results for Threshold Cointegration

LM Threshold Test Statistic 67.0382
(Asymptotic) .05 Critical Value 19.5843

Bootstrap .05 Critical Value 19.7316
(Asymptotic) p-value 0.0001

Bootstrap p-value 0.0001

Note: The model estimated is the bivariate specification with the carbon

spot and futures prices. The number of gridpoints for threshold and cointegrating

vector is equal to 300. For p-values, the number of bootstrap replications is set to

5,000.

15

175



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 160-181

Table 6: Threshold VECM Estimates
Threshold Estimate 4.9607

Cointegrating Vector Estimate 0.0539
Negative Log-Likelihood 1652.5329

First Regime D(LOGSPOT ) D(LOGFUT )
µ 0.4936*** 2.6346***

(0.1407) (0.2573)
wt−1 1.6912*** 3.7307***

(0.5494) (0.6569)
D(LOGSPOT (−1)) 0.0940** -1.0164**

(0.0364) (0.3937)
D(LOGFUT (−1)) 0.0137*** 0.0156***

(0.0049) (0.0048)
Percentage of Observations 0.0647

Second Regime D(LOGSPOT ) D(LOGFUT )
µ 0.1038* -0.2520

(0.0462) (0.1549)
wt−1 -1.9300*** -3.8738***

(0.4435) (1.2095)
D(LOGSPOT (−1)) 0.0553 0.1249

(0.0330) (0.0791)
D(LOGFUT (−1)) 0.0109*** -0.0213***

(0.0030) (0.0010)
Percentage of Observations 0.9353

Note: D(LOGSPOT ) stands for the carbon spot price in logreturns transformation.

D(LOGFUT ) stands for the carbon futures price in logreturns transformation.

Eicker-White standard errors are provided in parentheses. ***,**,* denote respectively

statistical significance at the 1%, 5% and 10% levels. The model estimated is defined in

eq(9).
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Figure 1: Time series of BNX Spot daily closing prices in raw form (top) and
logreturn transformation (bottom) from February 26, 2008 to April 26, 2011
Source: BlueNext
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Figure 2: Time series of ECX EUA Futures daily closing prices in raw form
(top) and logreturn transformation (bottom) from April 22, 2005 to April
26, 2011
Source: European Climate Exchange
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Figure 3: LM Statistic for the Bivariate Threshold Cointegration Model
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Figure 4: Threshold Cointegration Model: Response to the Error-Correction
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Appendix

Hansen and Seo (2002)’s Grid-Search Algorithm

To execute a grid-search, one needs to pick up a region over which to search.
Hansen and Seo (2002, p.297) suggest calibrating this region based on the
consistent estimate of β̃ obtained from the linear model. Set ˜wt−1 = wt−1(β̃),
let [γL, γU ] denote the empirical support of ˜wt−1, and construct an evenly
spaced grid on [γL, γU ]. Let [βL, βU ] denote a (large) confidence interval for β
constructed from the linear estimate β̃ and construct an evenly spaced grid on
[βL, βU ]. The grid-search over (β, γ) then examines all pairs (γ, β) on the grids
on [γL, γU ] and [βL, βU ], conditional on π0 ≤ n−1

∑n

t=1 1(x
′
tβ ≤ γ) ≤ 1− π0.
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