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1. Introduction

Air and water pollution were the initial focus of many environmental policies introduced
by OECD countries in the 1970s. These were motivated by a perception that natural environ-
ments were being degraded at an accelerating rate, with adverse consequences for ecosystems
and human health (OECD, 2008a)
A number of countries (e.g. Australia, France, Spain) aim to manage water resources

and pollutant discharges in a common, consistent framework at the river-basin level. Since
the adoption of the European Union Water Framework Directive, all EU member states are
required to use an integrated river basin management plan in order to achieve good water
status of all water bodies by 2015.
The Water Framework Directive establishes several integrative policies to compare the

costs between the cleansing of water downstream and the cost of pollution control upstream.
Integrated policies also facilitate cost recovery (OECD, 2004). By giving river-basin au-
thorities access to treatment costs that water supply operators have, it provides them with
information on the costs of upstream pollution, which may be used to estimate the rates of
pollutant releases water charges. In addition, river basin management not only facilitates
water allocation among competing uses within the basin but also the control of inter-basin
transfers (OECD, 2008b).
In Gómez-Rúa (2011) a model is developed in order to study this problem from a theoret-

ical point of view. A river is considered which is divided into n segments. In each segment,
there is an agent who discharges pollutant substances into the river. The authorities require
cleansing of the river in order to return it to its natural state. To pursue this, in Gómez-Rúa
(2011) several rules are proposed. It proposes to distribute the total pollutant-cleaning costs
among all the agents that cause the pollution. Additionally, for each rule, an axiomatic
characterization is provided by using properties based on water taxes.
This model was introduced by Ni and Wang (2007). They propose two rules to divide

the total river-polluting cost among the polluters and they provide characterization result
for both rules.
Dong et al. (2007) generalize the results in Ni and Wang (2007). They consider a

river network divided into n segments. In each segment there is exactly one agent, who
throw some kind of residue into the water. An environmental authority must share the
total cost of cleaning the river network among all the agents. They propose three rules
to share this cost. In particular, the Upstream Equal Sharing (UES) rule is characterized
with axioms of Additivity, Independence of Upstream Costs (that ensures that no agent
has any responsibility for the pollution caused in the upstream segments), Independence of
Irrelevant Costs (which states that an agent should not bear any costs which are irrelevant to
her, i.e., the costs regarding upstream-downstream relationship in the network), E¢ ciency
and Upstream Symmetry (which states that for any given downstream costs, all upstream
polluters share them equally).
E¢ ciency, Independence of Upstream Costs and Independence of Irrelevant Costs are

very appealing properties.
Additivity has been used in many di¤erent situations. For instance, in cooperative games

with transferable utility (TU), the Shapley value (Shapley, 1953) is characterized with this
property. Moulin (1987) and Chun (1988) used this axiom in surplus problems and in allo-
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cation problems, respectively. In bankruptcy problems and other related problems, Bergan-
tiños and Vidal-Puga (2004) characterize up to three di¤erent rules with additivity and
other properties. This axiom is also used in cost sharing problems (Moulin, 2002). Moulin
and Sprumont (2005) focus on additive rules for cost sharing problems with demands. In
minimum cost spanning tree problems, Bergantiños and Vidal-Puga (2009) characterize a
rule and provided a detailed discussion of this property. Moreover, in this context of shar-
ing the cost of cleaning a river, we can �nd real examples of water taxes that are additive
(Gómez-Rúa, 2011).
Regarding the property of Upstream Symmetry, many situations exist where this axiom

cannot be applied (see Gómez-Rúa (2011) The main purpose of this paper is to replace the
property of Upstream Symmetry by other properties, in order to obtain rules which are more
suitable to these situations.
We introduce a new property in this context, which collects the idea of both the Inde-

pendence of Upstream Costs and Independence of Irrelevant Costs. We call this property
Independence of No Responsibility Costs, and it ensures that an agent�s cost share only de-
pends on her own pollution cost as well as all downstream costs, but not on those costs
associated with some other segment for which she is not liable for.
Our main result is a characterization of the set of rules satisfying E¢ ciency, Additivity

and Independence of No Responsibility Costs. Besides this, we also characterize other rules
by adding two properties to the previous ones. Both properties were introduced in Gómez-
Rúa (2011) and are now generalized for the network context.
The �rst property takes into account the fact that in many cases residues that are dumped

into the river are biodegradable. Sometimes, it is possible to know the biodegradation rate of
the residues, say �; so it seems reasonable to demand that the cost that an agent should pay
for cleaning a polluted area, depends on this rate. We name this property �-Biodegradation
rate.
The second property follows from the fact that in many countries (such as Austria,

Canada, Finland, France, Germany, Greece, Hungary, Italy, Korea, Spain, Sweden, USA,
among others) there are several alternatives in the design of water tax rates. A variable
component exists which depends on di¤erent factors, such as, the volume of water consumed,
the pollution load, the population of the municipality, type of residue, etc. (Gago et al. 2005,
2006; OECD, 2006). Thus, each agent pays proportionally depending on these factors. This
is the idea of Proportional Tax.
The last result of the paper is a game theoretic approach. In Gómez-Rúa (2011), we

introduce a TU game, and we prove that one of the rules proposed coincide with the weighted
Shapley value of that game. In this paper, we generalize this result to the new context.
The paper is organized as follows. In Section 2, we introduce the model. In Section 3,

we characterize the family of rules satisfying three properties. In Section 4, we introduce
two more properties in this context and we present new rules and characterization results for
them. Moreover, we prove that one of the rules coincides with the weighted Shapley value
of a particular cooperative game.
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2. The model

We follow the model presented by Dong et al. (2007).
Consider a river network populated by a set of agents, N = f1; 2; :::; ng and a special

agent, L, called lake. Agents are connected to each other by a series of links. Upstream
agents each exude a certain amount of pollutant to the network. The polluted river needs
to be cleaned. The cost of cleaning every river link as well as the lake is known and must be
shared among these agents.
Formally, let N 0 = N [ fLg be the set of agents, and let E be the set of links on N 0: We

assume that E is a tree, i:e:; all agents are connected in E and there are no cycles.
A cost function is a mapping C : N [ fLg ! R+, where for each i 2 N; C(i) = ci is

the cost associated with agent i (e.g., the link cost that is associated with the link between
agent i and her successor toward L) and C(L) is the cost associated with L: We denote
C(N) =

P
i2N ci.

A cost-sharing problem on a river network is a triple (N 0; E; C):
A solution to a problem (N 0; E; C) is a vector x = (x1; :::; xn; xL) 2 Rn+1+ such thatP
i2N 0 xi = C(N) + C(L); where xi is the cost share assigned to agent i 2 N 0:
A method (or rule) is a mapping x that assigns to each problem (N 0; E; C) a solution

x(N 0; E; C):
Given a tree E, the upstream-downstream relation among the agents is uniquely deter-

mined by the node L: Also, for any agent, there is a unique path that connects a sequence
of downstream agents successively to L:
Now we introduce some notation related with the graph structure. Given (N 0; E; C); we

de�ne the following sets:
IU(i) := fj 2 N : there is a path from j to L such that i is j0s immediate downstream

agentg: The agents in IU(i) are called immediate upstream agents of i in E:
U(i) := fj 2 N : there exists h1; h2; :::; hm in N 0 such that h1 = i; hk+1 2 IU(hk) for all

1 � k � m� 1; and hm = jg: The agents in U(i) are called upstream agents of i in E:
D(i) := fj 2 N 0: i 2 U(j)g: The agents in D(i) are called downstream agents of i in E:
Given i; j 2 N 0; we de�ne the set d(i; j) := f(k; l) 2 E such that (k; l) is in the unique

path from i to jg: The geodesic distance from i to j is the cardinality of d(i; j); i:e:; jd(i; j)j :

3. Main result

Dong, Ni and Wang (2007) characterize the UES rule with �ve axioms: Additivity,
E¢ ciency, Independence of Upstream Costs, Independence of Irrelevant Costs and Upstream
Symmetry. The latter states that all the upstream agents are equally liable for a given
downstream pollution cost. However, there are situations where this particular axiom is not
applicable. Gómez-Rúa (2011) provides further discussion on this fact.
In this section we characterize the set of rules satisfying three properties: E¢ ciency,

Additivity and a new one that capture the ideas of both Independence of Upstream Costs and
Independence of Irrelevant Costs. We call this property Independence of No Responsibility
Costs.
Before presenting the main result, we formally introduce the axioms.
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E¢ ciency (E¤)
P

i2N 0 xi =
P

i2N 0 ci.

E¢ ciency requires that the cost shares of the agents add up to the total cost.

Additivity (Add) For any C1 = (c11; :::; c
1
n; c

1
L) 2 Rn+1+ , C2 = (c21; :::; c

2
n; c

2
L) 2 Rn+1+ and

i 2 N 0; xi(C
1 + C2) = xi(C

1) + xi(C
2); where C1 + C2 = (c1i + c

2
i )i2N 0 :

Additivity states that dividing the total cost among agents is the same as dividing one part
of the cost �rst and then dividing the remaining cost.

Independence of No Responsability Costs (INRC) Let i 2 N 0 and C;C 0 2 Rn+1+ such
that cj = c0j for all j 2 D(i) [ fig: Then, xi(C) = xi(C 0):

This property ensures that an agent�s cost share, only depends on her own pollution as
well as all downstream costs, but not on those costs associated with some other segment.
The pollution caused by agent i cannot reach these segments, so agent i should not bear any
cleanup cost of cleaning these segments.
Now we present the family of rules satisfying Add, E¤ and INRC. These rules divide the

cost of each segment j (cj) among the agents responsible for it (i 2 U(j)[fjg) proportionally
to a weight vector pj 2 Rn+1+ : Namely,

Theorem 1 A rule x satis�es E¤, Add and INRC if and only if for each j = 1; :::; n; L
there exists a weight system

�
pji
�
i2N 0 2 Rn+1+ such that pji = 0 when i 2 N 0n(U(j) [ fjg);P

i2N 0 p
j
i = 1 and

xi(C) =
X
j2N 0

pjicj

for all C 2 Rn+1+ and all i 2 N 0:
Proof. Let x be a rule de�ned as above. It is straightforward to prove that x satis�es E¤,
Add and INRC.
We now prove the reciprocal. Assume that x is a solution satisfying E¤, Add and INRC.

For each j 2 N 0; let 1j = (y1; ::::; yn; yL) 2 Rn+1+ be such that yj = 1 and yi = 0 when i 6= j:
We de�ne pj = x(1j):
Let xp be the rule induced by the weight system fpjgj2N 0 : We will prove that x = xp by

several claims. The claims are proved following Bergantiños and Vidal-Puga (2004).
Claim 1 fpjgj2N 0 is a weight system.
Proof of Claim 1. Since x satis�es E¤,

P
i2N 0 xi(1j) = 1: By de�nition of solution,

xi(1j) 2 Rn+1+ : Let i; j 2 N 0 such that i 2 N 0n(U(j)[ fjg): Since x satis�es INRC, xi (1j) =
xi (0; :::; 0) : Since x (0; :::; 0) 2 Rn+1+ and

P
l2N 0 xl (0; :::; 0) = 0; xi (0; :::; 0) = 0: �

Claim 2 Let cj 2 Q+ (a non-negative rational number), then
xi(0; :::; cj; :::; 0) = cjxi(0; :::; 1; :::; 0):

Proof of Claim 2. Let cj = 1=q; where q 2 N: By Add,
xi(0; :::; 1; :::; 0) =

Pq
k=1 xi(0; :::;

1
q
; :::; 0) = qxi(0; :::;

1
q
; :::; 0): Thus,

xi

�
0; :::;

1

q
; :::; 0

�
=
xi(0; :::; 1; :::; 0)

q
= cjxi(0; :::; 1; :::; 0): (1)
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Let cj 2 Q+, say cj = p
q
: By Add, xi

�
0; :::; p

q
; :::; 0

�
= pxi

�
0; :::; 1

q
; :::; 0

�
:

Then by (1), xi
�
0; :::; p

q
; :::; 0

�
= p

q
xi(0; :::; 1; :::; 0):�

Claim 3 Let cj 2 R+nQ+ (a non-negative irrational number), then xi(0; :::; cj; :::; 0) =
cjxi(0; :::; 1; :::; 0):
Proof of Claim 3. Let cj 2 R+nQ+. Then, there exists fblg1l=1 such that bl 2 Q+;

bl < cj and liml!1 bl = cj:
Let l 2 N: Since x(0; :::; cj � bl; :::; 0) 2 Rn+1+ and

P
i2N 0 xi(0; :::; cj � bl; :::; 0) = cj � bl;

0 � xi(0; :::; cj � bl; :::; 0) � cj � bl:
By Add, xi(0; :::; cj; :::; 0) = xi(0; :::; cj�bl; :::; 0)+xi(0; :::; bl; :::; 0): So, 0 � xi(0; :::; cj; :::; 0)�

xi(0; :::; bl; :::; 0) � cj � bl:
Since bl 2 Q+, xi(0; :::; bl; :::; 0) = blxi(0; :::; 1; :::; 0):Then,

0 � xi(0; :::; cj; :::; 0)� blxi(0; :::; 1; :::; 0) � cj � bl:
Thus, 0 � liml!1 [xi(0; :::; cj; :::; 0)� blxi(0; :::; 1; :::; 0)] � liml!1 [cj � bl] :
So, 0 � xi(0; :::; cj; :::; 0)� cjxi(0; :::; 1; :::; 0) � 0:
Therefore, xi(0; :::; cj; :::; 0) = cjxi(0; :::; 1; :::; 0):�
Claim 4 Given i 2 N 0 and C 2 Rn+1+ ; xi(c1; :::; cn; cL) =

P
j2N 0 xi(0; :::; 0; cj; 0; :::; 0):

Proof of Claim 4. It follows from the fact that x satis�es Add.�
Since xpi (c1; :::; cn; cL) =

P
j2N 0 p

j
icj; and by Claims 2 and 3,

xi(0; :::; cj; :::; 0) = cjxi(0; :::; 1; :::; 0) = cjp
j
i for all j 2 N 0 and all cj 2 R+; it

is clear that x = xp:

4. Other results

In this section, we provide characterizations of new rules, adding di¤erent properties
based on possible and real-life taxes over pollution in Theorem 1. These properties are
generalizations of the ones introduced in Gómez-Rúa (2011).
In many cases all the agents release the same kind of residues into the water and the

residues are biodegradable, thus the pollution disappears over time; for instance: organic
food waste, garden waste, forest residues, some industrial waste... Sometimes, it is possible
to know the biodegradation rate of the residues, say �. If it happens, the cost that an agent
pays for a polluted area should depend on this biodegradation rate. We introduce a new
property following this idea:

��Biodegradation Rate (��BR) Let � 2 [0; 1]: Given j 2 N 0; for any i; k 2 U(j) [ fjg
such that jd(i; j)j � jd(k; j)j ; xi(0; :::; 0; cj; 0; :::0) = �jd(i;j)j�jd(k;j)jxk(0; :::; 0; cj; 0; :::0):

Notice that � = 0 means that the residue of agent i only a¤ects its own area. In this
case ��BR means that every agent pays the cost corresponding to its own area, namely
xi (C) = ci for all C and i 2 N 0: � = 1 means that the residue is non-biodegradable. In this
case ��BR coincides with Upstream Symmetry (Dong et al., (2007)).
In the next theorem we study the e¤ects of adding ��BR to the properties in Theorem

1.
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Theorem 2 . A rule x satis�es Add, E¤, INRC and BR if and only if for each j = 1; :::; n; L
there exists a weight system

�
pji
�
i2N 0 2 Rn+1+ such that pji = 0 when i 2 N 0n(U(j)[fjg); pji =

�jd(i;j)j�jd(k;j)jpjk for any i 2 U(j); k 2 U(j) [ fjg such that jd(i; j)j � jd(k; j)j ;
P

i2N 0 p
j
i = 1

and xi(C) =
P

j2N 0 p
j
icj for all C 2 Rn+1+ and all i 2 N 0:

Proof. It is straightforward to prove that x satis�es ��BR. We now prove the reciprocal.
Let x be a rule satisfying Add, E¤, INRC and ��BR. By Theorem 1 for each j = 1; :::; n; L;
there exists a weight system

�
pji
�
i2N 0 2 Rn+1+ such that pji = 0 when i 2 N 0n(U(j) [ fjg);P

i2N 0
pji = 1 and xi(C) =

P
j2N 0

pjicj for all C 2 Rn+1+ and all i 2 N 0: We now prove that

pji = �
jd(i;j)j�jd(k;j)jpjk for any i 2 U(j); k 2 U(j) [ fjg such that jd(i; j)j � jd(k; j)j :

Let i; j; k 2 N 0 such that i 2 U(j); k 2 (U(j) [ fjg) and jd(i; j)j � jd(k; j)j : By the proof
of Theorem 1, pj = x (1j) : Since x satis�es ��BR,

pji = xi (1j) = �
jd(i;j)jxj (1j) = �

jd(k;j)j�jd(i;j)j�jd(k;j)jxj (1j)

= �jd(i;j)j�jd(k;j)jxk (1j) = �
jd(i;j)j�jd(k;j)jpjk:

In many countries, like Spain, Austria, Canada, Finland, France, Germany, Greece, Hun-
gary, Italy, Korea, Sweden, USA, among others (OECD, 2006), there exists a di¤erence
between the rates applicable to domestic uses and those applicable to industrial ones. The
taxes can be modulated considering di¤erent factors, such as pollution load, population of
the cities, monthly water consumption, etc. (See Gago et al., 2006). In Gómez-Rúa (2011)
we introduce a property that captures these ideas. Now, we generalize it for the context of
a river network:

Proportional Tax with respect to w (PT-w) Let w = (wi)i2N 0 2 Rn+1+ : We say that x
satis�es PT with respect to w if for any i; j; k 2 N 0 such that i 2 U(j); k 2 U(j)[fjg;
xi(0;:::;0;cj ;0;:::;0)

xk(0;:::;0;cj ;0;:::;0)
= wi

wk
:

This property states that the amount that each agent pays for a polluted area is given
by some exogenous factor.

PT-w generalizes Upstream Symmetry because when wi = wj for all i; j 2 N 0; both
properties coincide.
In the next theorem we study the e¤ects of adding PT-w to the properties in Theorem

1.

Theorem 3 . A rule x satis�es Add, E¤, INRC and PT-w if and only if for each j =
1; :::; n; L there exists a weight system

�
pji
�
i2N 0 2 Rn+1+ such that pji = 0 when i 2 N 0n(U(j)[

fjg); pji = wiP
l2U(j)[fjg wl

for all i 2 U(j) [ fjg and xi(C) =
P

j2N 0 p
j
icj for all C 2 Rn+1+ and

all i 2 N 0:
Proof. It is straightforward to prove that x satis�es PT-w. We now prove the reciprocal.
Let x be a rule satisfying Add, E¤, INRC and PT-w. By Theorem 1 for each j = 1; :::; n; L
there exists a weight system

�
pji
�
i2N 0 2 Rn+1+ such that pji = 0 when i 2 N 0n(U(j) [ fjg);
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P
i2N 0

pji = 1 and xi(C) =
P
j2N 0

pjicj for all C 2 Rn+1+ and all i 2 N 0: We now prove that

pji =
wiP

l2U(j)[fjg wl
for any i 2 U(j) [ fjg:

Let i; j 2 N 0 such that i 2 U(j) [ fjg: By the proof of Theorem 1, pj = x (1j) : Since x

satis�es E¤ and PT-w, 1

pjj
=

P
l2U(j)[fjg

pjl

pjj
=

P
l2U(j)[fjg

xl(1j)

xj(1j)
=

P
l2U(j)[fjg

wl
wj
=

P
l2U(j)[fjg

wl

wj
:

By PT-w, for each i 2 U(j) pji = xi (1j) = wi
wj
xj (1j) =

wi
wj
pjj =

wiP
l2U(j)[fjg

wl
:

In Gómez-Rúa (2011), a TU game is introduced and it is proved that one of the rules
proposed coincide with the weighted Shapley value of that game. Now, we generalize this
result to the network context.
We then relate the solutions given by Theorem 3 with the weighted Shapley values of a

TU game.
Given a problem (N 0; E; C) we de�ne the TU game

�
N 0; vE;C

�
where

vE;C (S) =
X

i2S:U(i)[fig�S

ci

for all S � N 0. Namely vE;C (S) represents the pollutant-cleaning costs of segments for which
only agents in S are responsible. This de�nition implies that, if a segment i is polluted by
agents that are in S but also by agents that do not belong to S, then the segment i is not
taken into account in order to compute vE;C(S):

Theorem 4 . Let xw the solution given by Theorem 3. Then, xw coincides with the weighted
Shapley value of vE;C with weights given by w 2 RN++; �w

�
N 0; vE;C

�
:

Proof. Let w = (wi)i2N 0 2 RN 0
+ . Let fuSgS�N 0 be a family of TU games such that uS (T ) = 1

if S \ T 6= ? and uS (T ) = 0 otherwise. It is well known that fuSgS�N 0 is a basis for the set
of all TU games. Kalai and Samet (1987) de�ne the value �w� as the unique linear value
satisfying that for each S � N 0; �w�i (uS) =

wiP
k2S wk

if i 2 S and �w�i (uS) = 0 otherwise.

Moreover, they prove that for each w 2 RN 0
+ and each TU game v; �w� (v) = �w (v�) where

v� (S) = v (N 0)� v (N 0nS) for all S � N 0:
Given (N 0; E; C) ; for each j 2 N 0; let (N 0; vj) be the TU game where for all S � N 0;

vj (S) = cj if S \ (U(j) [ fjg) 6= ? and vj (S) = 0 otherwise. Notice that vj = cjufU(j)[fjgg
for all j 2 N 0:
Given i 2 N 0;

xwi (C) =
X

j2N 0
pjicj =

X
j2D(i)[fig

wiP
k2U(j)[fjgwk

cj

=
X

j2D(i)[fig
�w�i

�
vj
�
=
X

j2N 0
�w�i

�
vj
�

=
X

j2N 0
�wi
�
vj�
�
= �wi

�X
j2N 0

vj�
�
:

Let S � N 0: Then, vj� (S) = vj (N 0)� vj (N 0nS) = cj � vj (N 0nS) : Since vj (N 0nS) = cj
when (N 0nS) \ (U(j) [ fjg) 6= ? and vj (N 0nS) = 0 when (N 0nS) \ (U(j) [ fjg) = ?,

vj� (S) =

�
cj if fU(j) [ fjgg � S
0 otherwise.

:
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Now it is trivial to prove that for all S � N 0; vC;E (S) =
P

j2N 0 vj� (S) : Hence, xwi (C) =
�wi
�
vC
�
:
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