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1. Introduction and terminology

Given a cooperative situation, one of the most conflicting problems is to distribute the
profit arising from cooperation among the agents. The core of a coalitional game plays
a central role in this analysis. Core-selection is a meaningful relevant property for any
solution concept in order to avoid that any coalition might object to it. However, since
the publication of the seminal paper of Aumann (1973), there has been an interesting
debate in the literature in favor and against to this property. Maschler (1976) illustrates
this point by analyzing examples where some allocations in the bargaining set, and not
in the core, have more sense than the core ones. We want to contribute with some simple
but interesting results in favor of both solution concepts. As a first result we show that if
the amount to be distributed among agents (the worth of the grand coalition or efficiency
level) is large enough the core and the bargaining set à la Davis and Maschler will always
coincide, and this coincidence will remain stable for higher levels of efficiency1. This result
contrasts to what happens with other bargaining sets like the Mas-Colell bargaining set
and its variants. For all these bargaining sets, an example of the non-coincidence with
the core at any level of efficiency is provided.

A coalitional game with transferable utility is a pair (N, v), where N = {1, 2, . . . , n}
is the set of players and v is the characteristic function, v : 2N → R, assigning to every
coalition S ⊆ N a real number v(S), the worth of S, with v(∅) = 0. We denote by |S|
the cardinality of the coalition S ⊆ N .

A payoff allocation is a vector z = (zi)i∈N ∈ RN , where zi is the payoff to player
i ∈ N . We write z (S) =

∑

i∈S

zi for all nonempty coalition S ⊆ N and z(∅) = 0. A payoff

allocation z ∈ RN is a preimputation of a game (N, v) when z (N) = v (N) (efficiency).
The set of all the preimputations of a game v is denoted by I∗(N, v). Moreover, we say
that a preimputation z ∈ I∗(N, v) is an imputation of the game (N, v) when zi ≥ v ({i})
for all i ∈ N (individual rationality). The set of all the imputations of a game v is denoted
by I(N, v). A game (N, v) is said to be essential if I(N, v) 6= ∅ (i.e., if

∑

i∈N

v({i}) ≤ v(N)).

The core of a game (N, v) is the set C (N, v) = {z ∈ I(N, v) | z(S) ≥ v(S) for all S ⊆ N}.
Next we define different concepts of bargaining sets. Let (N, v) be an essential game,

let x ∈ I(N, v) and let i, j ∈ N be two different players. A pair (S, y) is an objection at
x of player i against j when

i ∈ S ⊆ N\ {j} , y ∈ RS, y (S) = v(S) and yk > xk for all k ∈ S.

A counter-objection to the above objection (S, y) is a pair (T, z) where

j ∈ T ⊆ N\ {i} , z ∈ RT , z (T ) = v(T ),

zk ≥ yk for all k ∈ T ∩ S, zk ≥ xk for all k ∈ T\S.

An objection is justified if there is no counter-objection to it. The bargaining set of
a game (N, v) (Davis and Maschler, 1963, 1967) is the set

Mi
1(N, v) = {x ∈ I (N, v) | there is no justified objection at x}.

1Using a completely different argument, another lower bound is reached in Meertens (2005). We thank
to an anonymous referee for this information.
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By definition, we have C(N, v) ⊆ Mi
1(N, v) ⊆ I(N, v) since each core allocation

cannot be objected. Moreover, Mi
1(N, v) is always nonempty provided the game v is

essential (Davis and Maschler, 1963).
Let (N, v) be a game, let x ∈ I∗(N, v) and S ⊆ N . A pair (S, y) is a Mas-Colell

objection at x when y ∈ RS, y (S) = v(S) and yk ≥ xk for all k ∈ S, being at least
one of the inequalities strict. A Mas-Colell counter-objection to the objection (S, y) is
a pair (T, z) where z ∈ RT , z (T ) = v(T ), zk ≥ yk, for all k ∈ T ∩ S, zk ≥ xk for all
k ∈ T\S, being one of the inequalities strict. The Mas-Colell bargaining set of a game
(N, v) (Mas-Colell, 1989) is the set

MB(N, v) = {x ∈ I∗ (N, v) | there is no justified Mas-Colell objection at x}.

The individually rational bargaining set (Vohra, 1991) IRMB(N, v) is the set of im-
putations contained in the Mas-Colell bargaining set. Vohra notes that this bargaining
set is nonempty in the class of weakly superadditive coalitional games2. Therefore, for
any weakly superadditive game we have ∅ 6= IRMB(N, v) ⊆ MB(N, v). Shimomura
(1997) considers a modification of the Mas-Colell bargaining set (1989). As usual the
bargaining set is defined by means of an interaction of objections and counter-objections.
Let x ∈ I(N, v) be an imputation of the game I(N, v). A Shimomura objection at x is a
pair (S, y), ∅ 6= S ⊆ N and y ∈ RS with y(S) = v(S) such that yi > xi, for all i ∈ S.
A Shimomura counter-objection to (S, y) is a pair (T, z), z ∈ RT with z(T ) = v(T ) such
that zi > yi, for all i ∈ T ∩ S, and zi > xi for all i ∈ T \ S. The Mas-Colell bargaining
set (à la Shimomura) is defined as

MBSh(v) = {x ∈ I(N, v) | there is no justified Shimomura objection at x}.

Shimomura proves that this bargaining set is nonempty for games satisfying grand
coalition zero-monotonicity3 by checking that the individually rational quasi-core is a
nonempty subset of it (see Theorem 1 in Shimomura, 1997).

2. The bargaining sets and the core

We explore the eventual coincidence of some bargaining sets with the core of a coali-
tional game with transferable utility when we raise appropriately the worth of the grand
coalition(the efficiency level). In general, the core is included in each of the different bar-
gaining sets, and at his turn the bargaining sets are included in the imputation set, except
for the original Mas-Colell bargaining set which is defined on the preimputation set. All
of theses sets change when we raise the efficiency level. For some of these bargaining sets,
the coincidence with the core never occurs in general, that is, we can found games where
the inclusion between them is strict irrespective of how large the efficiency level is (see
Example 4). By contrast, we prove that for the Davis and Maschler bargaining set, it
always exists an efficiency threshold from where this coincidence holds.

2A game (N, v) is weakly superadditive if for all i ∈ N , v(S)+ v({i}) ≤ v(S ∪{i}), for all S ⊆ N \{i}.
3A game (N, v) is grand-coalition zero-monotonic if, for all S ⊆ N , v(S) +

∑

i∈N\S v({i}) ≤ v(N).
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For any game, we determine a bound, depending on the characteristic function of the
game, from which the coincidence of the core and the bargaining set holds. From now on
we denote by v̂ the vector (v(S))S⊆N

S 6= ∅, N

.

Theorem 1 For any coalitional game (N, v) there exists a real number k∗(v̂) ∈ R such
that

Mi
1(N, v) = C(N, v), if v(N) ≥ k∗(v̂).

Proof: For |N | = 2 we simply take k∗(v̂) = v({1}) + v({2}) and the proof is done.
For the case |N | ≥ 3 it holds that for any game (N, v) we have C(N, v) ⊆ Mi

1(N, v).
Therefore, it only remains to check that, for any game (N, v) with |N | ≥ 3, there exists a
lower bound for the worth of the grand coalition such that Mi

1(N, v) ⊆ C(N, v). For this
compute the solution of the following min-max optimization program

k∗(v̂) = min
a∈RN s.t.
ai≤v({i}),
i=1,...,n

{

max
S 6=∅,N

{n · [v(S)− a(S)] + a(N)}

}

. (1)

The above optimization program has at least one optimal solution4 , say a∗ = (a∗1, a
∗
2, . . . , a

∗
n)

with a corresponding optimal value, say k∗(v̂). In particular, if v(N) ≥ k∗(v̂), then we
have

v(N) ≥ n · (v({i})−a∗i )+a∗(N) or
v(N)− a∗(N)

|N |
≥ v({i})−a∗i ≥ 0, for any i ∈ N. (2)

Moreover, we claim that

if v(N) ≥ k∗(v̂) ≥ n · (v(S)− a∗(S)) + a∗(N), for all S 6= ∅, N, (3)

then the allocation u ∈ RN , defined as,

ui :=
v(N)− a∗(N)

|N |
+ a∗i , for all i ∈ N ,

is in the core of the game (N, v). To check it, first notice that u(N) = v(N). Moreover,
for all S 6= ∅, N ,

u(S) =
|S| · (v(N)− a∗(N))

|N |
+a∗(S) ≥

v(N)− a∗(N)

|N |
+a∗(S) ≥ v(S)−a∗(S)+a∗(S) = v(S),

where the first inequality holds by (2) and the last inequality by (3).

4Let ā ∈ RN with āi ≤ v({i}), for all i ∈ N . Denote by ℓ̄ = max
S 6=∅,N

{n · [v(S) − ā(S)] + ā(N)} and

define D̄ = {a ∈ RN | ai ≤ v({i}), for all i ∈ N and n · [v(S) − a(S)] + a(N) ≤ ℓ̄, for all S 6= ∅, N }.

Then, D̄ is non-empty and compact and min
a∈D̄

{

max
S 6=∅,N

{n · [v(S)− a(S)] + a(N)}

}

has the same solution

than the program given in (1).
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Now, let us suppose that we take x ∈ I(N, v) \ C(N, v). Hence, since u ∈ C(N, v),
there exists a player in N – w.l.o.g. say player n – such that, for all nonempty coalition
S  N ,

xn > un =
v(N)− a∗(N)

|N |
+ a∗n ≥ v(S)− a∗(S) + a∗n. (4)

Since x 6∈ C(N, v), let S̃ ⊆ N be an arbitrary coalition such that x(S̃) < v(S̃). Note
that player n 6∈ S̃; otherwise x(S̃) = x(S̃ \ {n}) + xn > x(S̃ \ {n}) + v(S̃)− a∗(S̃ \ {n}) ≥
v(S̃), reaching a contradiction, where the strict inequality comes from (4) and the last
inequality holds since xi ≥ v({i}) ≥ a∗i , for all i ∈ N .

Now, let i ∈ S̃ be an arbitrary player of coalition S̃. We show that any objection (S̃, y)
at x of player i ∈ S̃ to player n 6∈ S̃ cannot be countered. To see it, for any eventual
counter-objection (T, z) to the objection (S̃, y) we have n ∈ T , i 6∈ T and

z(T ) ≥ y(S̃ ∩ T ) + x(T \ S̃) ≥ x(T ) = xn + x(T \ {n})

> v(T )− a∗(T \ {n}) + x(T \ {n}) ≥ v(T ),

where the strict inequality holds by (4) and the last one again since xi ≥ v({i}) ≥ a∗i ,
for all i ∈ N . Therefore, we obtain z(T ) > v(T ), which invalidates the counter-objection.
We conclude x 6∈ Mi

1(N, v) and so Mi
1(N, v) = C(N, v). �

A direct consequence of Theorem 1 is that for the reactive and the semireactive bargaining
set (see Granot (2010), Sudhölter and Potters (2001) respectively) the coincidence of the
core and these bargaining sets also holds, since they are subsets of the Davis and Maschler
bargaining set. Furthermore, and by the same reason, we also get that the kernel of an
arbitrary game (Davis and Maschler, 1965) tends to be included in its core when we raise
the efficiency level.

We next apply Theorem 1 to the example given by Maschler (1976), showing an
easy method to calculate the bound k∗(v̂). Later, we will use this example to add some
comments and remarks.

Example 1 (Maschler, 1976) Consider a two-sided market where P = {1, 2} is the set
of players of one side of the market, Q = {3, 4, 5} is the set of players of the other side
and N = P ∪Q is the set of agents. Agents in P are complementary to agents in Q such
that the corresponding coalitional game is defined by

v(S) = min{|S ∩ P |,
1

2
|S ∩Q|}, for all S ⊆ N.

The worth of the grand coalition is v(N) = 3
2
, the core shrinks into a singleton,

C(N, v) = {(0, 0, 1
2
, 1
2
, 1
2
)} and the Davis and Maschler bargaining set strictly includes

the core since

Mi
1(N, v) = {(α, α, β, β, β) | 0 ≤ α ≤

3

4
, 2α + 3β =

3

2
}.

By Theorem 1 we know that at some level of efficiency k∗(v̂) both sets coincide. As
k∗(v̂) is the result of the min-max optimization problem (1) with linear objective functions
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and linear constraints we can solve the problem (1) directly by solving a linear programming
problem. To this aim we introduce a new variable ε ∈ R and the program (1) is equivalent
to solve

min ε

(a, ε) s.t.

ε+ (n− 1) · a(S)− a(N \ S) ≥ n · v(S), for all S ⊆ N, S 6= ∅, N

ai ≤ v({i}), for all i ∈ N.

(5)

Using a software to solve this problem we obtain that a∗ = (0, 0, 0, 0, 0) and ε∗ = 5 is
the optimal solution of (5). Hence, we conclude that if we raise the efficiency level above
ε∗ = 5, while the worth of the other coalitions remain fixed, the bargaining set and the
core coincide. This is, for any game (N, v′) such that v′(S) = v(S), for all S  N , and
v′(N) ≥ 5 we have Mi

1(N, v′) = C(N, v′).

Let us point out that Theorem 1 states that there always exists a lower bound for
the worth of the grand coalition of a game that ensures that its core and its bargaining
set do coincide. There are examples where the bound k∗(v̂) arises as the best bound
(the minimal one) to guarantee the coincidence. As an example, take N = {1, 2, 3} and
v(S) = 1, for all S  N,∅. In this case k∗(v̂) = 3 and it is attained at a∗ = (1, 1, 1).
Notice the game (N, v) is balanced if v(N) ≥ 3 and we know Mi

1(N, v) = C(N, v) for any
three-person balanced game.

There are other cases where k∗(v̂) could be improved since, in fact, the coincidence
between the corresponding core and the bargaining set starts before the bound k∗(v̂)
defined in (1). This is the case of the classical glove market game defined by N = P ∪Q,
P = {1, 2}, Q = {3, 4} and v(S) = min{|S ∩ P |, |S ∩ Q|}, for all S ⊆ N ; in particular
v(N) = 2. This game is a four-person balanced superadditive game and it is well known
that for such games it holds Mi

1(N, v) = C(N, v) (see Solymosi, 1999). Hence, for any
game (N, v′) such that v′(S) = v(S), for all S  N and v′(N) ≥ 2 the game is still
superadditive and balanced and so Mi

1(N, v′) = C(N, v′). However, it is easy to check
that k∗(v̂) = 4, attained at a∗ = (0, 0, 0, 0).

From the above comments, an immediate question arises: why don’t we try to get
the “best bound ”? The answer is that we cannot obtain it since, in general, we cannot
guarantee its existence. To see it, just take the example given by Meertens et al. (2007).
This example illustrates that the coincidence of the bargaining set and the core holds in
all the range of the worth of the grand coalition for which the game is balanced except
one value just in the middle of this range. This fact makes the study of the coincidence
of the two aforementioned sets far away to be a trivial problem, even when we only move
the worth of the grand coalition.

Example 2 (Meertens et al., 2007) Let δ ≥ 0, |N | = 13 and fδ : {0, 1, . . . , 13} → R

be defined as follows:

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fδ 0 0 0 0 0 22 22 22 22 22 47 47 47 61.1 + δ
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We define vδ(S) = fδ(|S|), for all S ⊆ N . The authors prove that Mi
1(N, vδ) = C(N, vδ),

for δ ≥ 0, δ 6= 0.9 and that C(N, v0.9)  Mi
1(N, v0.9).

This interesting example also shows that the coincidence between the bargaining set
and the core is not a prosperity property (van Gellekom et al., 1999). Let us recall that
the coincidence of the bargaining set and the core would be a prosperity property if, given
an arbitrary coalitional game, by increasing only the value v(N), the coincidence will
arise at some given moment and will be kept if we go on with increasing this value, and
vice versa. Theorem 1 states that there always exists an efficiency level from which the
coincidence holds. Example 2 shows that the converse does not hold and illustrates the
impossibility to check, in general, the “best bound”.

A second remark comes from Example 1. The optimal solution was attained at ε∗ = 5
and a∗ = (0, 0, 0, 0, 0), that is a∗i = v({i}) = 0, for all i ∈ N . However, we would like to
remark that it is not always the case as next example shows.

Example 3 Let us review Example 1 but now taking v({1, 2, 3, 4}) = 2. Solving the linear
program given in (5) we obtain ε∗ = 9 and a∗ = (0, 0, 0, 0,−1), where a∗5 6= v({5}) = 0.
Notice that if we take a = (v({i}))i∈N = (0, 0, 0, 0, 0) we obtain

max
S 6=∅,N

{n · (v(S)− a(S)) + a(N)} = 5 · max
S 6=∅,N

{(v(S)} = 5 · 2 = 10 > k∗(v̂) = 9.

Finally, let us see that other bargaining sets fail to have the coincidence result showed
in Theorem 1. This is the case of the original Mas-Colell bargaining set MB(N, v), the
individual rational Mas-Colell modification bargaining set introduced by Vohra (1991)
IRMB(N, v) and the Mas-Colell bargaining set à la Shimomura MBSh(N, v) introduced
by Shimomura (1997). Next example proves this fact.

Example 4 Let (N, v) be the following family of 5-person games where v({1, 2}) =
v({3, 4}) = 1, v({1, 2, 3, 4, 5}) = 2 + δ, δ ≥ 0, and v(S) = 0, otherwise. It is easy to
see that (N, vδ), δ ≥ 0, is a family of balanced coalitional games and so δ = 0 is when the
core starts to be nonempty. In fact,

C(N, vδ) =

{

(x1, x2, x3, x4, x5) ∈ R
5
+ |

x1 + x2 ≥ 1, x3 + x4 ≥ 1

x1 + x2 + x3 + x4 + x5 = 2 + δ

}

.

Let us see that, independently of the parameter δ ≥ 0, the core and the Mas-Colell
bargaining set and its variants do not coincide. To this aim, let us take the allocation
xδ = (0.3, 0.3, 0.3, 0.3, 0.8 + δ), δ ≥ 0. Notice xδ

1 + xδ
2 = 0.6 < v({1, 2}) = 1 which says

that xδ 6∈ C(N, vδ), for any δ ≥ 0.
Now, we check that xδ ∈ MB(N, v), for any δ ≥ 0. Note that only coalitions {1, 2} and

{3, 4} can make objections at xδ, δ ≥ 0, since they are the unique ones where xδ
1 + xδ

2 <

v({1, 2}) = 1 and xδ
3 + xδ

4 < v({3, 4}) = 1. Moreover, since v({1, 2}) − xδ
1 − xδ

2 =
v({3, 4})−xδ

3−xδ
4 = 0.4, any objection (in the sense of Mas-Colell) made by one of these

coalitions can be countered by the other and vice versa. Therefore, the coincidence result
does not hold for the Mas-Colell bargaining set. Moreover, since xδ ∈ I(N, vδ), for any
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δ ≥ 0, the coincidence result also does not hold for the individual rational bargaining set
of Vohra. Finally, it can be argued that xδ ∈ MBSh(N, vδ) \C(N, vδ), for all δ ≥ 0, since
strict objections (à la Shimomura) made via S = {1, 2} and S = {3, 4} can be countered
in a similar way.

Curiously, the Davis and Maschler bargaining set of any game of this family equals its
core, that is

Mi
1(N, vδ) = C(N, vδ), for any δ ≥ 0.

Roughly speaking, the reason is that if x 6∈ C(N, vδ), because x5 > 0 and x1 + x2 < 1,
then any objection through S = {1, 2} of player i = 1 to player j = 5 cannot be countered.
If we are in case where x5 = 0 and x1 + x2 < 1, then by efficiency x3 + x4 > 1, and any
objection of player i = 1 against player j = 3 via coalition S = {1, 2} cannot be coun-
tered. The analysis of eventual objections made through S = {3, 4} is analogous to the
previous case. Therefore any x ∈ Mi

1(N, vδ) must be in the core C(N, vδ), which reveals
a completely different behavior between these two families of bargaining sets.
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