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1 Introduction

In a recent paper, Boyer, Lasserre, and Moreaux (henceforth BLM) study the possible invest-

ment paths in a continuous time noncooperative Cournot duopoly. Firms face market demand

development uncertainty and may acquire lumpy capacity units at any point in time. Their work

integrates both the more recent “real options” methodology and a timing game à la Fudenberg

and Tirole (1985). The authors find that, when firms are capacity constrained, preemptive

equilibria always exist, but also simultaneous equilibria in which both firms delay investing over

a finite period, or never invest, may arise, depending on payoffs. Since there are no binding

agreements in this framework, the simultaneous investment equilibria are habitually qualified as

tacitly collusive.

This note extends the work of BLM (2012) by fully characterizing the conditions under which

one or the other type of (Pareto superior) collusive outcome may obtain in equilibrium. These

conditions are generally intricate, but we unveil a simple criterion to discriminate between finite

or infinite delay in collusive investment choices that relates directly to the structure of demand.

The easy applicability of our conditions is illustrated by examples. Using common demand forms

we show that, in the linear demand case, in all collusive equilibria firms abstain from investing

forever, and only by adding a curvature parameter do both types of equilibria arise.

For the note to be self-contained, in Section 2 we briefly present the model in the same

notation as the original paper. The conditions for tacit collusion are provided in Section 3.

Examples follow in Section 4.

2 The Model

We begin by describing (a case of) BLM’s model and essential results.1 Two firms compete in

quantities in a market with inverse demand Pt = YtD (Xt) where Xt is total quantity, D (Xt) is

positive, strictly decreasing, and strictly concave, and the shock Yt follows a geometric Brownian

motion, dYt = αYtdt+ σYtdZt, with Y0 > 0, α > 0 (growth rate), σ > 0 (volatility), and where

(Zt)t≥0 is a standard Wiener process.2 The timing of the game is as follows: 1) given the realiza-

1 BLM describe investment choices over the entire “tree” for firms that begin with no initial capacity and may

make multiple investments; our focus is on a subgame where both firms’ capacities are near the Cournot output.
2 The geometric brownian motion is derived from Yt = Y0 exp

��
α− 1

2
σ2
�
t+ σZt

�
by using Itô’s lemma. For

the equation of motion to describe a market in expansion, it is assumed that α > σ2

2
.
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tion of Yt, and existing capital stocks, each firm chooses to invest a number of “lumpy” capacity

units; 2) given capacity units, each firm selects an output level under capacity constraint; 3)

given output levels, market price is determined according to the inverse demand function.

Production is costless, so the optimal (unique and stable) per-period Cournot output xc

of each firm without capacity constraints is time-independent. Both firms are initially capacity

constrained with capital stock k ∈ N\{0} and each of them may relax the constraint by investing

in one additional unit. The end of the investment game is near, in that xc − 1 ≤ k < xc. Firms

decide non-cooperatively (contracts are ruled out) and without commitment when to invest in

an additional unit of capacity at cost I. Let l = k + 1. When a firm has i units of capacity

while its rival has j units, its instantaneous variable profit is denoted as Ytπij . Initially, with

capacity k, both firms earn Ytπkk = YtD (2k) k. When they both have capacity l, they may sell

xc, so that Ytπll = YtD (2xc)xc. Note that πlk > πkk > πkl, and πlk > πll > πkl.

Letting y ≡ Yt stand for the current demand shock, BLM establish that the value of a firm

f that invests immediately while its rival −f invests at the threshold ykl > y is:

Lkk (y, ykl) =
πlk

r − α
y − I +

�
y

ykl

�β πll − πlk
r − α

ykl,

where β = 1

2
− α

σ2
+
��
1

2
− α

σ2

�2
+ 2r

σ2

� 1
2

> 1, and r > α is a constant interest rate.3

A firm’s value from investing as a follower at ykl if its rival invests immediately at y < ykl is:

Fkk (y, ykl) =
πkl

r − α
y +

�
y

ykl

�β �πll − πkl
r − α

ykl − I

�
.

Each firm may benefit from the growing demand by relaxing the capacity constraint before

its rival. In the absence of commitment vis-à-vis investment choices, competition for the lead

position results in a preemption equilibrium, in which one of the two firms — with equiprobability

— invests before its rival. In this case a Markov Perfect Equilibrium (MPE) is determined by two

investment triggers ypkk < y∗kl. The trigger ypkk denotes the preemption threshold. It is defined

implicitly as the smaller root of the equation Lkk
�
ypkk, y

∗
kl

�
= Fkk

�
ypkk, y

∗
kl

�
, where the larger

root, y∗kl =
β
β−1

r−α
πll−πkl

I = argmaxykl Fkk (y, ykl), is the optimal follower threshold. Before y

reaches ypkk, both firms earn Ytπkk. Between ypkk and y∗kl, the leading firm f earns Ytπlk, while

firm −f earns Ytπkl. Both firms earn Ytπll when y ≥ y∗kl.

3 The expression of β is standard. See Dixit and Pindyck ((1994), pp. 140-144) for a detailed exposition of the

steps that lead to it.
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Firms may also coordinate investment choices. The value, measured at y, if both firms invest

simultaneously at the (possibly infinite) joint investment threshold ȳkk > y is:

Skk (y, ȳkk) =
πkk
r − α

y +

�
y

ȳkk

�β �πll−πkk
r − α

ȳkk − I

�
.

With the privately optimal simultaneous investment trigger yskk, firms’ payoff is S∗ ≡ Skk (y, y
s
kk).

3 Conditions for Tacit Collusion

Preemption equilibrium investment triggers
�
ypkk, y

∗
kl

�
always exist, but as BLM show, either

simultaneous investments at a finite or infinite yskk may constitute an MPE, that is Pareto

dominant. We follow convention by assuming that when several equilibria exist, the Pareto

dominant one is the most reasonable one to expect. As in BLM, we refer to coordination by the

firms on simultaneous investment as tacit collusion. Formally:

Proposition 1 (BLM, Prop. 5) Suppose Y0 ≤ ypkk :

1. A necessary and sufficient condition for a simultaneous MPE to exist is:

S∗ ≥ L (y, y∗kl) , ∀y ≤ y∗kl. (1)

If this inequality is strict, there exists a continuum of simultaneous MPEs. From the firms’

point of view, these MPEs are Pareto ranked.

2. The Pareto optimal simultaneous investment threshold is either yskk =
β
β−1

r−α
πll−πkk

I =

argmaxykk S (y, ykk) if πll > πkk (type 1 collusion), or infinite otherwise (type 2 collusion).

The existence of the tacit collusion equilibrium therefore depends on the function S∗. Note

that although (1) is very general as it does not refer explicitly to instantaneous profits, it may

be expressed differently depending on the comparison of πkk with πll, since:

S∗ =





πkk
r−α

y +
�
y
ys
kk

β �
πll−πkk
r−α

yskk − I


if πll > πkk;

πkk
r−α

y otherwise.
(2)

With some algebra, the necessary and sufficient condition (1) may be expressed as follows:
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Proposition 2 (Necessary and sufficient conditions for collusive equilibria) Suppose Y0 ≤ ypkk :

1. A type 1 collusion equilibrium exists if (BLM, Prop. 6) and only if πll > πkk and:

(πlk − πkk)
β ≤ (πlk − πkk) (πll − πkk)

β−1 + (β − 1) (πlk − πll) (πll − πkl)
β−1 . (3)

2. A type 2 collusion equilibrium exists if and only if πll ≤ πkk and:

(πlk − πkk)
β ≤ β (πlk − πll) (πll − πkl)

β−1 . (4)

Proof. (see Appendix)

BLM state the sufficient condition (3), but necessity is more elaborate to establish. In

addition, Proposition 2 provides a necessary and sufficient condition for type 2 collusion.

Conditions (3) and (4) do not have obvious economic interpretations, but on the other hand

we can remark that, when a Pareto optimal tacit collusion equilibrium exists, its nature hinges

on the sign of the difference πll − πkk, and this difference can be related simply to the demand

primitive. We establish that the sign of this difference actually depends on the straightforward

comparison of the initial stock of capital, k, with a critical level of output, x∗, which is the unique

quantity strictly lower than xc satisfying D (2x∗)x∗ = D(2xc)xc. Existence and uniqueness of

x∗ result from the strict concavity of D (Xt). On the basis of this, we can offer a characterization

of the type of Pareto optimal tacit collusion equilibria in the model, as follows.

Proposition 3 (Discrimination of collusive equilibria) Suppose Y0 ≤ ypkk. The Pareto optimal

collusive equilibrium is of type 1 (type 2) if and only if:

x∗ > (≤)k. (5)

Proof. (⇐) For all x̄ < x∗ the definition of x∗ implies D (2x̄) x̄ < D(2x∗)x∗ = D(2xc)xc. Then

pick x̄ = k, to obtain πkk < πll.

(⇒) We have X ≡ xf+x−f . As D (X)xf is strictly concave, D (2k) k < D(2xc)xc implies either

k > xc, which is ruled out by assumption, or (exclusively so) k < x∗.
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This result completes the analysis in BLM by identifying an easy to use criterion that

determines the type of collusion. The intuition is very clear. If the capacity constraint is

very severe (x∗ > k) in that firms’ instantaneous joint profit is less than in the unconstrained

Cournot case, it pays to invest more in a collusion equilibrium. Otherwise firms find it profitable

to stop investing in order to earn superior profits at each point in time forever. Remark that

k = ⌈xc⌉ − 1N(x
c), by assumption, so that the condition k < x∗ is equivalent to comparing the

integer component of xc, minus 1 only if xc is natural, with x∗. The greater the pre-installed

capacity k relative to Cournot output, the greater the likelihood of infinite delay.

BLM focus on type 1 equilibria, but type 2 equilibria are also noteworthy from an industrial

organization perspective. When x∗ ≤ k and (4) hold, despite instantaneous Cournot competi-

tion in output, the simultaneous equilibrium in investment choices mimics the kind of collusive

quantity restriction that may emerge in a repeated game setting. This link between the dy-

namic investment model and product market outcomes provides a justification of BLM’s use of

the tacit collusion terminology.

4 Examples

We now study the applicability of Propositions 2 and 3 to different demand functions. To begin

with, consider the common linear specification.

Example 1 Suppose that P (X) = a− bX, with a, b > 0.

Firm f ’s profit function is πf (xf , x−f ) = (a− b (xf + x−f ))xf . For type 1 collusion to occur,

we know from Proposition 3 that x∗ > k is necessary. In this linear setup, it is easy to check

that this condition is incompatible with the model’s main assumptions, namely that the game

is near its end, that is xc − 1 ≤ k, and that capacity units are lumpy, so that k ≥ 1.

Claim 4 In the case of linear demand, collusive equilibria are always of type 2.

Proof. By Proposition 3, type 1 collusion arises if x∗ > k. With P (X) = a − bX, we have

xc = 1

3

a
b

and it is direct to compute x∗ = 1

6

a
b
. By assumption, the lumpy pre-installed capacity

must satisfy k ≥ 1, and the near end condition imposes xc−1 ≤ k. This latter condition implies

that 1

3

a
b
≤ k + 1 ≤ 2, so 1

6

a
b
≤ 1, hence x∗ ≤ k.
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It follows that the linear specification is limited as an illustration of BLM’s full analysis

of tacitly collusive investment decisions. However, by considering a broader class of demand

functions, we can illustrate all the possible cases of Propositions 2 and 3.

Example 2 Suppose that P (X) = a− bXδ, δ > 0, and let a = 4δ
�
1 + δ

2

�
b.

Consider the case where k = 1, l = 2, as in BLM.4 Here the specific choice of a implies

that xc = 2, and allows us to focus on the role of the curvature parameter δ. By means of

Propositions 2 and 3 above, we can completely characterize in terms of the parameters β and δ

the collusive equilibria for this family of demand functions. To begin with, by Proposition 3:

Claim 5 The collusive equilibrium, if it exists, is of type 1 (type 2) if and only if δ > (≤) 1.

Proof. Simple computation establishes that π (xc, xc) =
�
a− b4δ

�
2 = δ4δb. The critical out-

put x∗ that solves π (x∗, x∗) = π (xc, xc) satisfies (a−2δbx∗δ)x∗ = δ4δb. Substituting 4δ
�
1 + δ

2

�
b

for a, we get x∗ as the lower root of:

fδ(z) ≡ −2
δzδ+1 + 4δ

�
1 +

δ

2

�
z − δ4δ,

where fδ(z) is concave in z over R+ and has xc = 2 as its upper root. If fδ(1) < 0, then x∗ > k

and collusion is of type 1 (conversely, if fδ(1) ≥ 0, x
∗ ≤ k and collusion is of type 2). It is then

sufficient to identify the roots of:

fδ(1) ≡ 2
δ

�
1−

δ

2

�
− 1,

where fδ(1) is a concave function of δ over R+. The two roots are δ = 0 (which is non admissible)

and δ = 1. For δ > 1 (≤ 1), fδ(1) < 0 (≥ 0) and collusion is type 1 (type 2).

It is interesting to observe that the linear demand form of Example 1 exactly constitutes a

limiting case of type 2 collusion with the specification that δ = 1 in Example 2. Here the type

1 collusion that BLM focus on may occur only if demand satisfies their assumption of strict

concavity, that is δ > 1.

4 Note that, although this demand does not satisfy the strict concavity assumption made by BLM for δ ≤ 1,

the proofs of our propositions remain valid with this specification.
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Figure 1: In Example 2, there is type 1 collusion in region I (points on the frontier δ = 1, that

correspond to the linear case, are excluded). There is type 2 collusion in region II.

The two conditions of Proposition 2 are checked by directly calculating the profits π11, π12,

π21, and π22. As a result, we are able to numerically partition the parameter space in (β, δ)

(the magnitude of b has no impact on the relative profits at different investment levels). The

results are plotted in Figure 1 for the values β ∈ (1, 3] and δ ∈ (1/2, 3/2] where all four possible

scenarios (type 1/type 2 collusion, existence/nonexistence) arise.
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Appendix

Before proving Proposition 2, we establish the following lemma:5

Lemma 1 Under the assumptions of the model, if πll > πkk, then πlk + πkl > πll + πkk.

Proof. Define π
�
xf , x−f

�
≡ D

�
xf + x−f

�
xf , and let �x = argmaxx≤l π (x, k). Then, πlk +

πkl = π (�x, k) + π (k, �x) ≡ Π(�x+ k), where Π(X) denotes industry profit. Let Xm denote the

monopoly quantity. First, suppose that �x+k < Xm. Because π
�
xf , x−f

�
is strictly submodular

(we have D′ < 0), πll + πkk = π (xc, xc) + π (k, k) < π (xc, k) + π (k, xc) = Π(xc + k), and since

xc+k ≤ �x+k and industry profit is increasing to the left of Xm, we have πll+πkk < Π(x
c + k) ≤

Π(�x+ k). Otherwise, suppose that �x+ k ≥ Xm. Let x∗(k) = argmaxx∈R+ π (x, k), where x∗(k)

is the unconstrained best-response to k. Because

����
∂x

f
∗

∂x−f

���� < 1 it must be that x∗(k) + k < 2xc.

Since �x ≤ x∗(k) we have �x + k < 2xc. As �x + k ≥ Xm, industry revenue is decreasing to the

right of �x+ k, so Π(�x+ k) ≥ Π(2xc). Finally, Π(2xc) = 2π (xc, xc) > π (xc, xc) + π (k, k) when

πll > πkk. Therefore Π(�x+ k) > π (xc, xc) + π (k, k) = πll + πkk.

Proof of Proposition 2

(1) By Proposition 1, and (2), a collusive equilibrium exists if and only if S∗ − L (y, y∗kl) ≥

0, ∀y ≤ y∗kl, where S∗ − L (y, y∗kl) is written as:

πkk − πlk
r − α

y + I +

�
y

yskk

�β �πll − πkk
r − α

yskk − I

�
+

�
y

y∗kl

�β πlk − πll
r − α

y∗kl,

with yskk =
β
β−1

r−α
πll−πkk

I and y∗kl =
β
β−1

r−α
πll−πkl

I. The function S∗ − L (y, y∗kl) is convex in y,

strictly positive and decreasing at 0 (BLM). It is non-negative on the interval [0, y∗kl] if and only

if either (i) it has a non-positive derivative and a non-negative value at y∗kl, or (ii) its minimum

value over R+ is non-negative. We know from BLM that the latter condition holds if and only if

(3) holds. We show that the former condition cannot hold. To see that, compute the derivative

of S∗ − L (y, y∗kl) w.r.t. y, that is:

−
πlk − πkk
r − α

+ β

�
y

yskk

�β−1�πll−πkk
r − α

−
I

yskk

�
+ β

�
y

y∗kl

�β−1 πlk − πll
r − α

.

5 The same reasoning also holds for the potentially convex demand in Example 2.
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Evaluated at y∗kl, this gives:

(β − 1) (πlk − πll) + πkk − πll
r − α

+
πll−πkk
r − α

�
πll − πkk
πll − πkl

�β−1
,

which is non-positive if:

(πll − πkk)
β ≤ (πll − πkl)

β−1 [βπll − πkk − (β − 1)πlk] .

The value of S∗ − L (y, y∗kl) at y∗kl is:

−
β

β − 1

πlk − πkk
πll − πkl

I + I +
1

β − 1
I

�
πll − πkk
πll − πkl

�β
+

β

β − 1

πlk − πll
πll − πkl

I,

which is non-negative if:

(πll − πkl)
β−1 [πll − βπkk + (β − 1)πkl] ≤ (πll − πkk)

β .

Therefore, for a non-positive derivative and a non-negative value at y∗kl, the following two con-

ditions must hold jointly:

�
(πll − πkk)

β ≤ (πll − πkl)
β−1 [βπll − πkk − (β − 1)πlk]

(πll − πkl)
β−1 [πll − βπkk + (β − 1)πkl] ≤ (πll − πkk)

β
.

However, this implies that:

πlk + πkl ≤ πll + πkk,

violating Lemma 1. Hence S∗ − L (y, y∗kl) cannot have both a non-positive derivative and a

non-negative value at y∗kl. Consequently, it is non-negative on the interval [0, y∗kl] if and only (3)

holds.

(2) In this case, S∗ − L (y, y∗kl) is written as:

−
πlk − πkk
r − α

y + I +

�
y

y∗kl

�β πlk − πll
r − α

y∗kl,

with still y∗kl =
β
β−1

r−α
πll−πkl

I, and the derivative of S∗ − L (y, y∗kl) w.r.t. y is:

−
πlk − πkk
r − α

+ β

�
y

y∗kl

�β−1 πlk − πll
r − α

.
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As above, S∗−L (y, y∗kl) is a convex function of y that is strictly positive and strictly decreasing

at the origin. Let us now study the behavior of S∗ − L (y, y∗kl) at y∗kl. The derivative at y∗kl has

the sign of:

(β − 1)πlk + πkk − πll > 0.

It follows that the minimum of S∗ − L (y, y∗kl) always lies in [0, y∗kl). Note incidentally that

S∗ −L (y, y∗kl) is always positive at y∗kl. A tacit collusion equilibrium therefore exists if and only

if the value of S∗ − L (y, y∗kl) at this minimum in non-negative. The derivative is zero when

y =
�
1

β
πlk−πkk
πlk−πll

 1

β−1
y∗kl. The minimized value is then:

−
β

β − 1

πlk − πkk
πll − πkl

I

�
1

β

πlk − πkk
πlk − πll

� 1

β−1

+
1

β − 1

πlk − πkk
πll − πkl

I

�
1

β

πlk − πkk
πlk − πll

� 1

β−1

+ I,

which is non-negative if and only if:

(1− β)

�
1

β

πlk − πkk
πlk − πll

� 1

β−1

+ (β − 1)
πll − πkl
πlk − πkk

≥ 0,

or equivalently β (πlk − πll) (πll − πkl)
β−1 ≥ (πlk − πkk)

β . �
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