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1. Introduction 

 

Parametric income distribution models (PIDMs) are used for various objectives. Examples 

are estimation of income distribution and inequality/poverty indices from grouped data when 

survey micro data are unavailable, construction of regression models for economic analysis 

using, e.g., the Mincer equation (typically with a lognormal error distribution), and study of 

the mechanisms that generate income distributions. Various models have been proposed, but 

the search for models that provide a better fit is ongoing. The novelties of this paper are as 

follows: i) Two promising new PIDMs – the κ-generalized (κG) distribution (Clementi et al. 
2007) and the double-Pareto lognormal (dPLN) distribution (Reed 2003) – are compared with 

the existing beta-type PIDMs simultaneously in terms of goodness-of-fit; ii) not only 

frequency-based (FB) measures (such as the likelihood value) but also money-amount-based 

(MAB) measures (such as the accuracy of estimation of the Lorenz curve) are employed in 

the goodness-of-fit evaluation; and iii) the combined effect, using a mixture model approach 

in which the overall income distribution is approximated by a mixture of distributions 

separately fitted by subgroup (age class of household heads) is also investigated to address 

the issue of heterogeneity in population composition. When PIDMs are fitted to empirical 

data for the purpose of estimating income inequality, a sufficiently high goodness-of-fit is 

required in terms of MAB criteria. Even if the estimation of income inequality is not an 

explicit objective, better MAB evaluation is desirable in addition to better FB evaluation. 

However, the goodness-of-fit is evaluated using only FB measures in most cases in the 

literature. The empirical results in this paper demonstrate that superior FB evaluation does 

not necessarily imply higher accuracy in the inequality indices when new types of PIDMs are 

introduced. Some PIDMs such as the dPLN are derived under specific assumptions regarding 

heterogeneity in population composition. If the assumptions are not valid, then the 

heterogeneity may adversely affect the goodness-of-fit of the models. Use of a mixture model 

approach is one way of overcoming the heterogeneity issue; however, the ordinary fitting 

method for mixture models is generally difficult to apply, and the results are often unstable. 

Instead, a PIDM is simply fitted to each subgroup using the maximum likelihood estimation 

(MLE), and the overall income distribution is approximated by a mixture of distributions 

fitted to the subgroups in this paper. The empirical results show that, when separately fitted 

by the age class of household heads (the ‘MLE-by-Age’ method) to US and Italian income 

data, the dPLN mixture model attains a fit comparable to or better fitting than that obtained 

by fitting all of the PIDMs in the ordinary MLE in terms of both FB and MAB criteria. 

Furthermore, in the overall evaluation, the empirical results show that the dPLN mixture 

model outperforms all of the PIDMs in the ordinary MLE in the sense that the dPLN mixture 

model is better fitted according to at least one of the two criteria in almost all cases. By 

contrast, (single) four-parameter models, the dPLN and the generalized beta distribution of 
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the second kind (GB2, McDonald 1984), and their generalizations with five parameters, the 

generalized dPLN (GdPLN) distribution (Reed and Wu 2008) and the generalized beta (GB) 

distribution (McDonald 1995) show no clear improvement over three-parameter models in 

the overall evaluation of the goodness-of-fit. The dPLN is also suitable for the MLE-by-Age 

method in that its mixture model has an explicit analytic expression for the Gini coefficient. 

 

2. Statistical size distributions to be compared 

 

The GB2 and special cases thereof are popular as well-fitted PIDMs. The probability density 

function (pdf) of the GB2 is given by: 

ୋ݂ଶሺݔ; ܽ, ܾ, , ሻݍ = ,ሺܤିଵܾݔܽ ሻሾ1ݍ + ሺݔ/ܾሻሿା. (1)

The GB2 is identical to the Singh-Maddala (SM) distribution (Singh and Maddala 1975) 

when  = 1 and to the Dagum (Da) distribution (Dagum 1977) when ݍ = 1. 

Reed (2003) demonstrates that if each individual/household log income follows 

Brownian motion, ݀ log ܺ௧ = ݐ݀ߤ +  ,௧ denotes standard Brownian motionܤ ௧, whereܤ݀ߪ

and its elapsed time from birth (entry into the labor market) to observation follows the 

exponential distribution, then the income distribution follows the dPLN. The pdf of the dPLN 

can be expressed as follows: ݂ୢ ሺݔ; ,ߤ ,ଶߪ ,ߙ =ሻߚ ߙߚߙ + ߚ ቈݔఉିଵ݁ିఉఓାఉమఙమ ଶ⁄ Φ ቆlog ݔ − ߤ + ߪଶߪߚ ቇ
+ ఈିଵ݁ఈఓାఈమఙమିݔ ଶ⁄ Φቆlog ݔ − ߤ − ߪଶߪߙ ቇ, (2)

where ߙ, ,ߚ ߪ > 0, Φ denotes the cumulative distribution function (cdf) of the standard 

normal distribution and Φ ≔ 1 − Φ. The dPLN is equivalent to the distribution of the 

product of two mutually independent random variables that follow the double-Pareto and 

lognormal distribution, respectively. The log-transformed random variable of the dPLN 

therefore follows the normal Laplace (NL) distribution, given by the convolution of the 

Laplace and normal distributions. The lower and upper tails of the dPLN follow the Pareto 

law,  ݂ୢ ሺݔሻ~ܿଵିݔିଵ	ሺݔ → ∞ሻ,   ݂ୢ ሺݔሻ~ܿଶݔஒିଵ ሺݔ → 0ሻ, (3)

where ܿଵ and ܿଶ are positive constants. It should be noted that the assumption of regularity 

of the cohort’s birth and death is not necessarily required for emergence of the dPLN. If an 

independent transitory component following an (asymmetric) zero-reverting diffusion process 

is introduced, then the income distribution in any homogenous group approaches the dPLN 

after sufficiently long time (see Toda 2012). 

Reed and Wu (2008) demonstrate empirically that the dPLN outperforms the GB2 in 
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various countries using FB criteria. They mention that the Gini coefficient of the dPLN has 

no closed-form expression; however, the closed-form expression does, in fact, exist. Explicit 

formulae for the mean log deviation (MLD) and Theil index of the dPLN can be derived from 

the formula for the higher moments (Reed and Wu 2008), applying the procedure employed 

for the respective indices of the GB2 suggested by Jenkins (2007). These formulae are 

presented in the Appendix with an implicit expression for the Lorenz curve of the dPLN. 

Reed and Wu (2008) also demonstrate empirically that a generalization of the dPLN 

substantially improves the goodness-of-fit evaluated using FB measures in various countries. 

The log-transformed random variable of the generalized dPLN (GdPLN) is equivalent to the 

generalized NL distribution which has the following characteristic function (cf): ߶ୋሺݏሻ =  ߙሺߚߙ − ߚሻሺݏ݅ + ሻݏ݅ ݁ఓ௦ିఙమ௦మ/ଶ൨ఘ. (4)

In formula (4), the cf of the NL distribution is derived when ߩ = 1. As neither the pdf nor the 

cdf of the GdPLN has a closed-form expression, the inverse transformation of the cf in (4) 

must be performed numerically when fitting the GdPLN to empirical data. 

Clementi et al. (2007) derive the κG distribution by ‘Weibullizing’ the κ-exponential 

function, expሺݔሻ ≔ ൫√1 + ଶݔଶߢ + ൯ଵݔߢ ⁄
. This deformed exponential function is a 

product of the generalized entropy studies in thermostatistics. Clementi et al. show 

empirically that, in terms of FB criteria, the κG is fitted better than the SM and Da to 

equivalized disposable incomes obtained from the US panel survey PSID and the German 

panel survey GSOEP. The κG has the following pdf: 

ச݂ୋሺݔ; ܽ, ܾ, ሻߢ = ିଵݔܽ expሺ−ሺݔ ܾ⁄ ሻሻܾඥ1 + ݔଶሺߢ ܾ⁄ ሻଶ , (5)

where ܽ, ܾ > 0 and 0 ≤ ߢ < 1. The cdf is given by ܨசୋሺݔሻ = 1 − expሺ−ሺݔ/ܾሻሻ. Note 

that lim→ expሺݔሻ = ݁௫. The lower and upper tails of the κG follow the Pareto law, 

ச݂ୋሺݔሻ~݇ଵିݔഉೌିଵ	ሺݔ → ∞ሻ,   ச݂ୋሺݔሻ~݇ଶ ቀ௫ቁିଵ ݁ିሺ௫/ሻೌ ሺݔ → 0ሻ, (6)

where ݇ଵ and ݇ଶ are positive constants. The κG has explicit analytic expressions for its 

MLD, Theil index, Gini coefficient and Lorenz curve (Clementi et al. 2009). 

 

3. Data and Methods 

 

The PIDMs mentioned in the previous section are fitted to micro data from the US Survey of 

Consumer Finances (SCF) and the Italian Survey of Household and Wealth (SHIW), both 

conducted in 2000 – 2010. Owing to limited data availability, the gross income before 

taxation is used for the SCF, and the disposable income after taxation is used for the SHIW. 

The results for the equivalized personal incomes, calculated by dividing each household 
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income by the square root of the number of household members are presented in this paper. 

The corresponding results for unadjusted household income generally display similar trends. 

Points of differences between both results are described in the next section. 1  The 

corresponding results for the Japanese income distribution, obtained using grouped data 

(Okamoto 2012b), are also briefly described in footnote in the next section for reference. 

The maximum likelihood estimation (MLE) method is employed to fit the PIDMs. The 

following log likelihood value is maximized:  ݈ሺࣂ; ሻݔ = ݓ log ݂ሺݔ; ીሻୀଵ , (7)

where ݂ denotes the pdf of the PIDM, ી is the set of PIDM parameters, ݊ is the sample 

size. Each sample household is assumed to earn an (equivalized) income ݔ and be assigned 

a weight ݓ for tabulation purposes (multiplied by the number of household members in the 

case of equivalized personal income), which is normalized to unity on average. In addition to 

the MLE, a variant method allowing for the exclusion of effects owing to age heterogeneity is 

employed. This method uses a mixture model approach in which the PIDMs are fitted for 

each age class of the household heads and the overall income distribution is approximated by 

a mixture of the fitted distributions (the ‘MLE-by-Age’ method). Fitting by household size 

and region were also evaluated, but the MLE-by-Age method outperforms those alternatives. 

To compare the goodness-of-fit of the three- and four-parameter PIDMs, the likelihood 

value is converted into a value of Schwarz’s Bayesian Information Criterion (BIC): BIC = −2݈ + log ݊ ∙ #ી, (8)

where #ી denotes the number of parameters in the PIDM of interest. The value of log ݊ 

ranges from 8.0 to 8.8 for the SCF and is approximately 9.0 for the SHIW. For comparisons 

between PIDMs with the same number of parameters, the bootstrap method is applied to test 

the significance of the differences at the one-sided 5 percent level. 2  

As for the MLE-by-Age method, comparisons are performed using the likelihood value 

of the mixture distribution,  ሚ݂ ቀݔ; ൛ીൟቁ = ;ݔ݂൫ ી൯ , (9)

called the ‘synthetic’ value in this paper and its corresponding BIC value. In formula (9), 	 = ∑ ∈ீݓ ∑ ⁄ୀଵݓ  is the population share of age class ݃, and ી denotes the set of 

                                                  
1 Strictly speaking, the survey units of the SCF are ‘primary economic units’ (PEUs), economically independent 
subunits within households (see Bricker et al. 2012). Equivalized personal income is defined as the income of 
the PEU divided by the square root of the number of household members belonging to the PEU.  
2 In the SCF, 999 sets of replicate weights are available. Iterative calculations with different sets of replicate 
weights are equivalent to the bootstrap procedure consistent with the survey design. The simple bootstrap 
method is performed for the SHIW. Approximately 300 sets of replicate weights are made available from the 
2008 SHIW. The replicate weights enable us to perform the Jackknife procedure consistent with the survey 
design. The results of the comparison do not appear significantly different from those based on the simple 
bootstrap method.  
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parameter values for class ݃ estimated by the MLE. The sample households are classified 

into four age classes containing roughly equal numbers of households: 44 years or younger, 

45 – 54, 55 – 64 and 65 years or older. In the BIC calculation of the MLE-by-Age results, the 

synthetic likelihood value is penalized based on the number of PIDM parameters. The penalty 

is not multiplied by the number of age classes because no biases in the synthetic likelihood 

value derived using the MLE-by-Age method relative to that derived using the ordinary MLE 

is observed in simulation owing to the difference in the total number of parameters. A notable 

difference between the ordinary likelihood and synthetic one is that the value of latter for the 

GB2 may be lower than that for its special cases such as the SM. 

The reason for the choice of the BIC is that, according to the bootstrap simulation, there 

are cases where the synthetic likelihood value of a three-parameter PIDM can be higher than 

that of a four-parameter PIDM with a probability above 5 percent if the latter is judged to be 

better fitted by Akaike’s Information Criterion (AIC). Other FB measures, such as the sum of 

squared errors of the cdf, display similar results with the (synthetic) likelihood value and 

therefore omitted from the description. 

To incorporate accuracy in income inequality estimation into the goodness-of-fit 

evaluation, the square root of the sum of the squared errors of the Lorenz curve (L-RSE)3,  

ඨ ቀܮ − ;൫ܿܮ ൯ቁଶୀଵࣂ  (10)

and the estimation errors of four major inequality indices (the Gini coefficient, coefficient of 

variation (CV), MLD and Theil index) are used as MAB measures. In formula (10), the 

incomes ݔ are assumed to be arranged in ascending order, and the empirical Lorenz curve, ܮ = ∑ ஸݔݓ ∑ ⁄ୀଵݔݓ ,  and Lorenz curve of the PIDM, ܮ൫ܿ; ൯ࣂ =  ;ݕ൫݂ݕ ிషభሺሻݕ൯݀ࣂ  ;ݕ൫݂ݕ ஶൗݕ൯݀ࣂ , are compared at cumulative population 

shares ܿ = ∑ ஸݓ ∑ ⁄ୀଵݓ , ݅ = 1,⋯ , ݊. The term ‘error’ is used in this paper to refer to 

the deviation from the empirical respective statistic directly calculated from the survey data 

(Table 1). Although the L-RSE obtained using the MLE and MLE-by-Age methods may be 

affected by the number of parameters in the PIMDs, as is the likelihood value, the proper 

penalty for the number of parameters is not clear. In practice, it is frequently observed that the 

L-RSE of the GB2 is larger than that of the SM and Da. The L-RSEs of the three- and 

four-parameter PIDMs are therefore directly compared without adjustment in this paper, 

considering that it is meaningful to test statistically whether the L-RSEs of the 

                                                  
3 The errors at different points on the Lorenz curve are not independent of each other. It may be argued that the 
correlations should be taken into account in measuring the estimation accuracy. However, estimating the 
correlations is nontrivial, particularly near either ends of the Lorenz curve. Parametric models for the Lorenz 
curve are therefore fitted using the simple OLS in many cases (cf. Kakwani 1980). No problems with this 
method have been identified in empirical applications thus far. 
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three-parameter PIDM is equal or smaller than that of the four-parameter PIDM for the MAB 

evaluation. Significance tests of the accuracy of the inequality index estimates are omitted 

because those estimates are presented as supplements to demonstrate the appropriateness of 

the L-RSE as a MAB measure. 

The explicit analytic expression given in the Appendix can be used for the calculation of 

the Gini coefficient of the dPLN mixture distribution derived using the MLE-by-Age method, 

whereas numerical computation is required for the other PIDM mixture distributions.4 

 

 
Table 1. Empirical inequality indices 

Survey Year Gini CV MLD Theil 

SCF 

2001 0.538 3.243 0.542 0.757 
2004 0.516 2.924 0.495 0.660 
2007 0.559 4.170 0.573 0.843 
2010 0.534 3.448 0.511 0.695 

SHIW 

2000 0.328 0.729 0.197 0.192 
2002 0.322 0.695 0.193 0.184 
2004 0.329 0.823 0.194 0.204 
2006 0.323 0.840 0.190 0.200 
2008 0.324 0.726 0.187 0.188 
2010 0.327 0.682 0.197 0.186 

 

 

4. Results 

 

The goodness-of-fit of the PIDMs in the MLE analysis is presented in Table 2. The κG attains 

the minimum BIC value for all of the PIDMs in the first half of the decade 2000–2010 for the 

SCF and attains the minimum or near-the-minimum L-RSE5 for the entire period for both 

surveys. On average, the κG also attains the minimum errors in estimation of the major 

inequality indices. For the similar likelihood/BIC values, the κG tends to yield smaller 

L-RSEs and errors in inequality measures than the Da and SM.  

The GB2 suffers from larger BIC values than the Da for both surveys and larger L-RSEs 

than the κG for the SCF. The dPLN displays a goodness-of-fit superior to that of the GB2. 

Nevertheless, its BIC values and L-RSEs are several times larger than those of the Da or κG. 

Both PIDMs therefore fail to attain goodness-of-fit that is clearly superior to that of the 

three-parameter PIDMs. 

More extensive models with five parameters, the GB and GdPLN, were also evaluated; 

                                                  
4 For the SCF, five sets of income data are provided because the multiple imputation method is adopted. The 
(synthetic) likelihood value, Gini coefficient, MLD and Theil index are calculated for each set and then 
averaged. As for the corresponding five calculations for the L-RSE and CV, the square root of the mean-squared 
values is adopted. 
5 For simplicity, the term ‘near the minimum’ is used to mean that the value is not significantly different from 
the minimum in this paper. 

2975



Economics Bulletin, 2012, Vol. 32 No. 4 pp. 2969-2982

however, the GB does not improve the BIC values for both surveys, and the GdPLN does not 

improve the BIC values for the SCF. The GdPLN improves the BIC values substantially for 

the SHIW, but its L-RSEs are unstable, as shown in Table 3. The GdPLN therefore cannot be 

regarded as superior to the dPLN in the overall evaluation. The results imply that the 

estimation stability of the Lorenz curve and inequality indices must be ensured even if the 

GdPLN displays remarkable improvement in goodness-of-fit over the dPLN in terms of the 

FB criteria.  

The dPLN becomes the best-fit model when combined with the MLE-by-Age method, 

as shown in Table 2. The BIC values significantly decrease relative to those in the ordinary 

MLE except for the 2010 SCF. 6 As for the SCF, the L-RSEs also decrease significantly 

relative to those for the MLE except for the 2010 survey. If including insignificant changes, 

the L-RSEs decrease in all cases except for the 2002 SHIW. The BIC value and L-RSE for 

the dPLN mixture model are significantly below or near the minimums of all of the PIDMs in 

the MLE except for the BIC value for the 2001 SCF, and the value of which (for at least one 

of the two measures) is significantly below the minimum in the MLE in all cases. 

 

 

Table 2(a). Goodness-of-fit of the PIDMs – SCF 

Stat. Year 
MLE MLE-by-Age 

SM Da κG GB2 dPLN SM Da κG GB2 dPLN
BIC a 2001 5.3* -3.9* -16.7* -0.1* 0.0* 4.6## -9.6## -19.0## -14.4## -13.6## 

2004 -8.1* -9.5* -10.2* -1.2* 0.0* -2.8## -6.4## -12.8## -15.2## -14.8## 
2007 -2.6* -2.6* 5.8* 5.7* 0.0* -11.4## -7.4## 2.6## -24.5## -26.3## 

  2010 17.4* 5.6* 83.9* 11.4* 0.0* 20.6## 12.3## 77.8## 6.7## -0.2## 
L-RSE 2001 2.51* 2.55* 1.93* 2.03* 1.84* 1.88## 2.39## 1.88## 1.50## 1.34## 

2004 1.81* 1.59* 1.25* 1.66* 1.50* 1.59## 1.75## 1.48## 1.27## 1.14## 
2007 2.14* 2.17* 1.51* 2.19* 1.85* 1.19## 1.98## 2.21## 1.12## 0.76## 

  2010 0.30* 0.45* 0.59* 0.99* 0.64* 0.50## 0.31## 0.88## 0.71## 0.34## 
Gini 2001 -0.039 -0.042 -0.032 -0.033 -0.030 -0.028 -0.039 -0.032 -0.025 -0.023 

2004 -0.029 -0.026 -0.021 -0.027 -0.024 -0.024 -0.029 -0.026 -0.021 -0.019 
2007 -0.034 -0.034 -0.026 -0.034 -0.028 -0.018 -0.032 -0.041 -0.024 -0.012 

  2010 -0.002 -0.004 -0.011 -0.014 -0.009 0.006 0.001 -0.016 -0.010 -0.002 
MLD 2001 -0.083 -0.084 -0.063 -0.065 -0.059 -0.064 -0.080 -0.063 -0.048 -0.042 

2004 -0.058 -0.049 -0.036 -0.052 -0.047 -0.052 -0.056 -0.046 -0.039 -0.035 
2007 -0.071 -0.073 -0.047 -0.073 -0.063 -0.040 -0.067 -0.073 -0.037 -0.023 

  2010 -0.003 -0.010 -0.008 -0.029 -0.019 0.015 0.002 -0.017 -0.020 -0.006 
Theil 2001 -0.239 -0.239 -0.179 -0.190 -0.172 -0.163 -0.218 -0.165 -0.126 -0.105 

2004 -0.176 -0.155 -0.120 -0.162 -0.147 -0.150 -0.166 -0.139 -0.116 -0.101 
2007 -0.211 -0.215 -0.135 -0.217 -0.180 -0.046 -0.181 -0.194 -0.066 -0.006 

  2010 0.001 -0.023 -0.011 -0.080 -0.039 0.081 0.017 -0.032 -0.041 0.021 

 

 

 

                                                  
6 The ordinary log maximum likelihood value in the MLE-by-Age method, i.e. the sum of the log maximum 
likelihood values for all age classes, is significantly higher than the log maximum likelihood value in the 
ordinary MLE in terms of the likelihood ratio test and BIC in all cases. 
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Table 2(b). Goodness-of-fit of the PIDMs – SHIW 

Stat. Year 
MLE MLE-by-Age 

SM Da κG GB2 dPLN SM Da κG GB2 dPLN
BIC a 2000 31.7* -1.4* 3.0* 7.4* 0.0* 19.0## -26.5## -3.3## -23.0†# -26.2†#

2002 44.4* -0.9* 9.8* 6.2* 0.0* 29.4## -26.8## 0.5## -22.4†# -26.7†#

2004 8.7* 0.6* 6.7* 9.0* 0.0* 6.1## -13.9## 3.0## -7.7†# -13.8†#

2006 24.3* 2.8* 11.1* 11.7* 0.0* 5.2## -15.9†# -7.0## -11.6## -19.4##

2008 3.8* 1.9* 8.3* 7.7* 0.0* -6.7## -14.7†# 6.5## -24.4## -32.2##

  2010 35.1* -2.1* 4.8* 6.9* 0.0* 3.2## -27.6## -2.5## -20.7†# -25.3†#

L-RSE 2000 0.251* 0.118* 0.098* 0.104* 0.095* 0.183# 0.140# 0.171# 0.095# 0.080#

2002 0.199* 0.116* 0.135* 0.133* 0.123* 0.175# 0.108# 0.145# 0.162# 0.154#

2004 0.323* 0.221* 0.224* 0.264* 0.238* 0.291# 0.257# 0.292# 0.257# 0.218#

2006 0.379* 0.302* 0.254* 0.285* 0.287* 0.356# 0.388# 0.238# 0.230# 0.225#

2008 0.174* 0.123* 0.125* 0.136* 0.125* 0.136# 0.193# 0.150# 0.139# 0.086#

  2010 0.164* 0.094* 0.100* 0.100* 0.103* 0.142# 0.130# 0.091# 0.082# 0.084#

Gini 2000 -0.003 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.000 0.000 
2002 0.000 0.001 0.003 0.003 0.002 0.002 0.001 0.003 0.003 0.003 
2004 -0.005 -0.003 -0.003 -0.004 -0.003 -0.004 -0.004 -0.004 -0.004 -0.003 
2006 -0.005 -0.004 -0.003 -0.004 -0.004 -0.005 -0.006 -0.003 -0.003 -0.003 
2008 -0.002 0.001 0.000 -0.001 -0.001 0.001 0.003 -0.001 -0.002 0.000 

  2010 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 
MLD 2000 -0.009 -0.003 -0.002 -0.003 -0.003 -0.008 -0.004 -0.006 -0.002 -0.002 

2002 -0.009 -0.003 -0.002 -0.001 -0.002 -0.007 -0.004 -0.002 0.000 0.000 
2004 -0.010 -0.006 -0.004 -0.007 -0.007 -0.009 -0.006 -0.005 -0.006 -0.006 
2006 -0.014 -0.009 -0.007 -0.009 -0.010 -0.013 -0.011 -0.007 -0.007 -0.008 
2008 -0.005 0.000 0.001 -0.003 -0.003 -0.002 0.002 0.000 -0.003 -0.001 

  2010 -0.007 -0.001 -0.001 0.000 -0.001 -0.003 0.001 0.000 0.000 0.000 
Theil 2000 -0.012 -0.004 -0.002 -0.003 -0.003 -0.007 -0.005 -0.006 -0.002 -0.001 

2002 -0.006 0.000 0.004 0.004 0.003 -0.003 0.000 0.005 0.007 0.006 
2004 -0.020 -0.014 -0.012 -0.016 -0.016 -0.019 -0.016 -0.015 -0.016 -0.014 
2006 -0.026 -0.020 -0.017 -0.020 -0.020 -0.024 -0.023 -0.015 -0.016 -0.015 
2008 -0.009 -0.001 -0.001 -0.006 -0.005 0.000 0.003 -0.001 -0.005 -0.001 

  2010 -0.005 0.003 0.003 0.003 0.003 0.002 0.005 0.004 0.003 0.004 
CV 2000 -0.062 -0.024 -0.011 -0.018 -0.015 -0.022 -0.020 -0.021 -0.004 0.009 

2002 -0.035 -0.003 0.018 0.017 0.013 -0.017 -0.002 0.029 0.040 0.041
2004 -0.130 -0.098 -0.079 -0.109 -0.103 -0.121 -0.104 -0.091 -0.100 -0.092
2006 -0.175 -0.148 -0.125 -0.144 -0.145 -0.161 -0.156 -0.102 -0.097 -0.095 
2008 -0.050 -0.011 -0.003 -0.034 -0.029 0.019 0.026 0.012 -0.020 0.000 

  2010 -0.018 0.020 0.026 0.022 0.022 0.022 0.034 0.036 0.028 0.034
Note: The errors in the CV estimates for the SCF are omitted because the CVs of the fitted PIDMs are infinite 

in most cases. a The deviations from the corresponding BIC values of the dPLN in the MLE fitting are 
presented. * The minimum among the PIDMs in the MLE fitting or (statistically) near the minimum. # 

The minimum among the PIDMs in the MLE-by-Age fitting or near the minimum (excluding the cases 
corresponding to ‘##’). ## In addition to satisfy the condition ‘#’, significantly lower than the minimum 
in the MLE fitting in cases where the minimum in the MLE is attained by a PIDM with the same 
number of parameters, or lower than the minimum in the MLE fitting in cases where the minimum in 
the MLE is attained by a PIDM with a larger number of parameters. † Of those not the 
minimum/near-the-minimum in the MLE-by-Age fitting but significantly lower than the minimum in 
the MLE fitting in cases where the minimum in the MLE is attained by a PIDM with the same number 
of parameters, or lower than the minimum in the MLE fitting in cases where the minimum in the MLE 
is attained by a PIDM with a larger number of parameters. 
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Table 3. Goodness-of-fit of the four- and five-parameter PIDMs – SHIW 

Year 
BIC a L-RSE 

GB2 dPLN GB GdPLN GB2 dPLN GB GdPLN 

2000 7.4 0.0 15.3 -27.6 0.104 0.095 0.103 0.155 
2002 6.2 0.0 8.7 -70.1 0.133 0.123 0.113 0.076 
2004 9.0 0.0 18.0 2.9 0.264 0.238 0.267 0.328 
2006 11.7 0.0 18.9 -13.7 0.285 0.287 0.272 0.285 
2008 7.7 0.0 16.7 -34.7 0.136 0.125 0.137 0.132 
2010 6.9 0.0 15.5 -24.7 0.100 0.103 0.090 0.096 

Note: The Lorenz curve of the GB is computed numerically. a The deviations from the 
corresponding BIC values of the dPLN in the MLE fitting are presented.  

 

 

As for the SHIW, the MLE-by-Age method also substantially improves the BIC values 

for the Da. In particular, the BIC values are lower than those of the dPLN mixture model for 

2000 – 2004 and 2010. However, averaged over the entire period, the BIC value for the Da 

mixture model is higher than that of the dPLN mixture model, and the L-RSEs for the Da 

mixture model are larger than those for the Da in the MLE and significantly inferior to those 

of the dPLN mixture model on average. The GB2 is also improved using the MLE-by-Age; 

however, the dPLN still maintains its superiority to the GB2. When comparing the 

goodness-of-fit of all of the PIDMs across the MLE and MLE-by-Age methods, on average 

over the entire period, the dPLN mixture model attains the minimum BIC and L-RSE, as well 

as the minimum errors or nearly minimum errors in the inequality indices. 

In the case of the unadjusted household income, the dPLN similarly improves using the 

MLE-by-Age, whereas the κG suffers from poor goodness-of-fit in terms of the BIC. 

Nevertheless, for the SCF, the κG attains the minimum L-RSE for all PIDMs in the MLE.7 

 

5. Concluding Remarks 

 

Most of the existing major PIDMs belong to the GB family. The emergence of new types of 

PIDMs such as the κG and dPLN raises the question of the appropriateness of goodness-of-fit 

evaluation performed using FB measures (such as the maximum likelihood value) alone. This 

paper proposes the L-RSE, an accuracy measure based on the Lorenz curve, as a MAB 

measure. The empirical results indicate that the L-RSE complements the FB measures well 

for a more comprehensive goodness-of-fit evaluation.  

Although the search for better-fitted PIDMs should continue, heterogeneity in the 

                                                  
7 As for the Japanese size distribution of unadjusted household gross incomes of two-or-more-person 
households, the κG is inferior to the SM and Da in terms of both likelihood value and L-RSE. The SM is better 
fitted to the Japanese income distribution than the Da. This fact may relate to the poor performance of the κG, 
which appears relatively close to the Da. The same speculation holds for unadjusted household incomes from 
the SHIW. The dPLN is so remarkably improved by the MLE-by-Age method in Japan, at least around 2000 and 
later, that it attains the highest goodness-of-fit in the overall evaluation. (Okamoto 2012b) 
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population may render such models difficult to obtain. This paper suggests that 

fitting-by-subgroup approaches, such as the MLE-by-Age method, or more sophisticated 

methods incorporating regression techniques can provide alternative ways to obtain 

better-fitted models.  
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Appendix. Inequality indices and Lorenz curve of the double-Pareto lognormal (dPLN) 

distribution 

 

The derivation of the analytic expressions for the Gini coefficient of the dPLN and dPLN 

mixture distributions requires the following formulae: the pdf, cdf and mean of the dPLN in 

(2), (A1) and (A2), a general formula for the Gini coefficient in (A3), and useful integral 

formulae in (A4) and (A5). ୢܨ ሺݔ; ,ߤ ,ଶߪ ,ߙ =ሻߚ ߙߚߙ + ߚ ቈ1ߚ ఉ݁ఉఓାఉమఙమݔ ଶ⁄ Φ ቆlog ݔ − ߤ + ߪଶߪߚ ቇ + Φ൬logߚ1 ݔ − ߪߤ ൰
− ߙ1 ఈ݁ఈఓାఈమఙమିݔ ଶ⁄ Φቆlog ݔ − ߤ − ߪଶߪߙ ቇ + Φ൬logߙ1 ݔ − ߪߤ ൰, 

(A1)

ୢܯ = න ୢ݂ݔ ሺݔሻ݀ݔஶ
 = ߙሺߚߙ − 1ሻሺߚ + 1ሻ ݁ఓାఙమ/ଶ, (A2)

ܩ = 2න ሻݔሺܨሺݔ − 1 2⁄ ሻ݂ሺݔሻ݀ݔஶ
 න ஶݔሻ݀ݔሺ݂ݔ

൘ , (A3)

නିݔିଵΦ൬log ݔ − ߪߤ ൰݀ݔ = 1ܽ expቆ−ܽߤ + ଶ2ߪଶߙ ቇ, (A4)

නିݔିଵΦ൬log ݔ − ଵߪଵߤ ൰Φ൬log ݔ − ଶߪଶߤ ൰݀ݔ
= 1ܽ ቈexpቆܽଶߪଵଶ2 − ଵߤ−−ଵቇΦቆߤܽ + ଶߤ + ଵଶߪଵଶ√2ߪܽ ቇ
+ expቆܽଶߪଶଶ2 − ଵߤ−ଶቇΦቆߤܽ + ଶߤ − ଵଶߪଶଶ√2ߪܽ ቇ, 

(A5)

where ܽ > 0 ଵଶଶߪ , ≔ ఙభమାఙమమଶ . The identity Φሺݔሻ = Φሺ−ݔሻ , and variable transformation ݖ = 1 ⁄ݔ  are also employed for the derivation. 

The Gini coefficient of the dPLN is given by: ୢܩ = ൣ2Φ൫ߪ √2⁄ ൯ − 1൧ + (A6) ,ܫ

where ܫ is defined as follows: 

2 ሺఈିଵሻሺఉାଵሻሺఈାఉሻሺఈିఉିଵሻ − ఉሺఈିଵሻሺଶఈିଵሻ ݁ఈሺఈିଵሻఙమΦቀ− ଶఈିଵ√ଶ +ቁߪ ఈሺఉାଵሻሺଶఉାଵሻ ݁ఉሺఉାଵሻఙమΦቀ− ଶఉାଵ√ଶ ߙ ቁ ifߪ ≠ ߚ + 1,  

2 ఈሺఈିଵሻሺଶఈିଵሻమ ݁ఈሺఈିଵሻఙమ ቀଵఈ + ଵఈିଵ + ଶଶఈିଵ − ሺ2ߙ − 1ሻߪଶቁΦቀ− ଶఈିଵ√ଶ ߶ߪቁ+√2ߪ ቀ− ଶఈିଵ√ଶ ቁߪ  if ߙ = ߚ + 1,  

where ߶ denotes the pdf of the standard normal distribution. The Gini coefficient of the 

dPLN mixture distribution, with the pdf ݂ሺݔሻ = ∑ ݂ୢ ൫ݔ; ,ߤ ,ଶߪ ,ߙ ൯ߚ , can be 
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expressed as follows: ܩୢ = ൬2 ୢܯܬ − 1൰ + 2 ୢܯ ,ୢܯܭ =  ߙ൫ߚߙ − 1൯൫ߚ + 1൯ ݁ఓାఙమ/ଶ , 
ܬ =  ߙ൫ߚߙ − 1൯൫ߚ + 1൯ ݁ఓାఙమ/ଶΦቆߤ − ߤ + ߪଶ√2ߪ ቇ, , 
ܭ =  ߙ൫ߚߙߚߙ + ߙ൯ሺߚ + ,ܭሻߚ , 

(A7)

where ߪଶ ≔ ఙమାఙమଶ  and ܭ is defined by: 

− ൫ఈାఉ൯ఈሺఈିଵሻ൫ఈାఈିଵ൯൫ఈିఉିଵ൯ ݁ିሺఈିଵሻఓାఈఓାఈమఙమ ିమഀషభమ ఙమΦ൬ఓିఓିଶఈఙమ ାఙమ√ଶఙ ൰ +
ሺఈାఉሻఉ൫ఉାଵ൯൫ఉାఉାଵ൯൫ఈିఉିଵ൯ ݁ିఉఓା൫ఉାଵ൯ఓାఉమఙమ ାమഁశభమ ఙమΦ൬ఓିఓିଶఉఙమ ିఙమ√ଶఙ ൰  if ߙ ≠ ߚ + 1, 

ଵఈሺఈିଵሻ ݁ିሺఈିଵሻఓାఈఓାఈమఙమ ିమഀషభమ ఙమ ൬ 1ఈ + 1ఈିଵ + 1ఈାఈିଵ + 1ఈାఉ + ߤ − ߤ − ଶߪߙ2 +
ଶ൰Φ൬ఓିఓିଶఈఙమߪ ାఙమ√ଶఙ ൰ + ߶ߪ2√ ൬ఓିఓିଶఈఙమ ାఙమ√ଶఙ ൰൨  if ߙ = ߚ + 1. 

The MLD and Theil index of the dPLN are givn by: MLD = ଶ2ߪ + log  ߙሺߚߙ − 1ሻሺߚ + 1ሻ൨ − ߚ − ߚߙߙ , (A8)

Theil = ଶ2ߪ − log  ߙሺߚߙ − 1ሻሺߚ + 1ሻ൨ + ߚ − ߙ + 2ሺߙ − 1ሻሺߚ + 1ሻ. (A9)

Note that the condition ߙ > 1 is required for the mean and inequality indices to be defined. 

The second term in equation (A6) vanishes when ߙ, ߚ → ∞. The first term is equal to the 

Gini coefficient of the lognormal distribution with the same dispersion parameter. The second 

term in equation (A7) vanishes and the first term converges to the Gini coefficient of the 

lognormal mixture distribution, with the pdf ݂ሺݔሻ = ∑  ݂൫ݔ; ,ߤ ଶ൯ߪ , when ߙ, ߚ → ∞ 

for all ݃, as follows: ܩ = 2 ߤ݁ఓାఙమ/ଶΦቆ − ߤ + ߪଶ√2ߪ ቇ,  ݁ఓାఙమ/ଶ൘ − 1. (A10)

The analytic expression for the Gini coefficient of the lognormal mixture model was used to 

investigate the conditions for U-shaped relation between the size elasticity ߠ and the Gini 

coefficient of the income distributions when the equivalized personal income is calculated as ݔ = ݕ ݉ఏ⁄ , where ݕ is the amount of household income and ݉ is the number of household 

members (Okamoto 2012a). To the author’s knowledge, the formula in (A10) do not appear 

elsewhere in the literature.  
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The Lorenz curve of the dPLN can be expressed implicitly as follows: ୢܮሺܿሻ = Φቆlog ݕ − ߪଶߪ ቇ − ߚ + ߙ1 + ߚ ఈାଵ݁൫ఈమିଵ൯ఙమିݕ ଶ⁄ Φቆlog ݕ − ߪଶߪߙ ቇ
+ ߙ − ߙ1 + ߚ ఉାଵ݁൫ఉమିଵ൯ఙమݕ ଶ⁄ Φ ቆlog ݕ + ߪଶߪߚ ቇ , 0 < ܿ < ሺ0ሻୢܮ ,1 = 0, and ୢܮሺ1ሻ = 1, 

(A11)

where ݕ = ܨୢ ିଵ ሺܿሻ.  
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