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1 Introduction

Many recent research have studied the nonparametric regression models with autocorrelated
errors, which is not uncommon in times series economic data. Consider the regression model

Yt = m(Xt) + ut, t = 1, · · · , T, (1)

where the stationary residual process ut is autocorrelated but satisfies E(ut|X1, · · · , XT ) = 0
almost surely. The function m(·) is assumed to be smooth but unknown otherwise and is
the object of central interest. Many studies, for example, Altman (1990), Marsry (1996)
and Martins-Filho and Yao (2009), showed that the standard kernel estimator on model (1),
which ignores the error structure, is consistent but not efficient. Recent research have focused
on improving the estimation efficiency of the kernel smoothing by correcting standard errors
for serial correlation. One promising procedure, based on prewhitening the errors to make
them look like white noise, has been analyzed by, among others, Xiao et al. (2003), Su and
Ullah (2006) and Martins-Filho and Yao (2009). They show that the prewhittening estimator
can improve the first order properties of kernel method. In this paper, we propose a new local
polynomial procedure for m(x) in the time series regression model (1). With this proposed
estimator, we first estimate the error autocorrelations through residuals from a preliminary
regression. Then in the final local polynomial type regression, all sample points are used to
estimate m(x) but contributions from all points but those within local neighborhood of x
are used only through their residuals. We show in a Monte Carlo study that the proposed
estimator not only improves estimation accuracy over standard local polynomial estimator
but also outperforms the prewhitening procedure in all DGP designs under study.

2 Estimation

Let {Yt, Xt, ut}Tt=1, where Xt ∈ Rd and Yt ∈ R, be a sample from regression model (1). We
assume the residual process ut has a invertible linear process representation

ut = γ(L)εt =
∞∑
j=0

γjL
jεt =

∞∑
j=0

γjεt−j, (2)

where εt is independent identically distributed with mean 0 and variance σ2
ε , L is the usual lag

operator. The error process {ut}Tt=1 is assumed to be independent of the process {Xt}Tt=1. The
coefficients {γj}∞j=0 sequence is unknown except it is absolutely summable, i.e.

∑∞
j=1 |γj| <

∞. The autocorrelation matrix of {ut}Tt=1 will be denoted by R. The process allows ut
to be any finite-order ARMA(p, q) process. We invert γ(L) to obtain an autoregressive
representation of ut of potentially infinite order,

γ(L)−1 = α(L) = α0 − α1L− · · · − αjLj − · · · = α0 −
∞∑
j=1

αjL
j (3)
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where we define α0 = 1 without loss of generality. So we have α(L)ut = εt.
Let K denote a symmetric kernel function on Rd and H = diag(h1, · · · , hd) a matrix of

bandwidth sequences that degenerate with sample size T . Define KH(z) = |H|−1K(H−1z).
Following the notations in Marsry (1996), in the standard multivariate local polynomial
regression of order q one solves

min
bl(x)

T∑
t=1

[Yt −
∑

0≤|l|≤p

bl(x0)(Xt − x0)l]2KH(Xt − x0) (4)

where l = (l1, · · · , ld)′, l! = l1! · l2! · · · ld!)′, |l| =
∑l

i=1 li, x
l = xl11 × xl22 × xldd ,

∑
0≤|l|≤q =∑

j=0

∑j
l1=0 · · ·

∑j
ld=0

l1+···+ld=j
, and bl(x) is the estimate for polynomial parameter 1

l!
(Dlm)(x) with

(Dlm)(x) = ∂lm(x)

∂x
l1
1 ···∂x

ld
d

. Let Nv =
(
v+d−1
d−1

)
be the number of distinct d-tuples l with |l| = v.

Arrange these Nv d-tuples as a sequence in a lexicographical order with highest priority
to last position so that (0, · · · , 0, v) is the first element and let g−1|l| denote this one-to-

one map from the sequence to its index. Arrange the N|l| values of (H−1(Xt − x))l in a
column vector Gt,|l|(x) according to the above order. Then [Gt,|l|(x)]k = (H−1(Xt − x))g|l|(k)

for k = 0, · · · , |l|. Define Gt,≤q(x0) = {Gt,0(x)
′
, Gt,1(x)

′
, · · · , Gt,q(x)

′}′ , a column vector of
dimension N =

∑q
v=0Nv × 1. Then define G≤q(x) = {G1,≤q(x), G2,≤q(x), · · · , GT,≤q(x)}′ , a

matrix of dimension T × N . Similarly for 0 ≤ |l| ≤ q arrange the distinct values of hlbl(x)
as a column vector b|l|(x) of dimension N|l| × 1, in the same lexicographical order. Then
define b(x) = {b0(x)

′
, b1(x)

′
, · · · , bq(x)

′}′ . With these notations the proposed procedure is as
follows.

1. Calculate a preliminary consistent estimate of m by local polynomial (of order q1)
smoothing Yt on Xt with corresponding kernel KH0(·) and bandwidth H0. Denote the
preliminary estimate as m̂(Xt) and calculate the estimated residuals

ût = Yt − m̂(Xt)

2. Let τ = τ(T ) be some truncation parameter suitably small relative to the sample size
T but large enough to avoid serious bias. Conduct a τ th order autoregression of ût,

ût = α̂1ût−1 + · · ·+ α̂τ ût−τ + residual.

Define the estimate Âτ = (α̂1, · · · , α̂τ )
′

of Aτ = (α1, · · · , ατ )
′
, as

Âτ = (Û
′

τ Ûτ )
−1Û

′

τ ût,

where û = (ûτ , · · · , ûT )
′

and Ûτ is the (T − τ) × τ matrix of regressors with typical
element ût−τ . Then we construct the estimated autocorrelation matrix R̂ using the
Yule-Walker equations from AR(τ) process:

ρj = α̂1ρj−1 + α̂2ρj−2 + · · ·+ α̂pρj−p for j = 1, 2, · · ·
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3. Let G.t(x) = E.tG≤q(x) be the T × N matrix where Et denotes the T × T indicator
matrix with the [t, t]th entry equal 1, and 0 elsewhere. The m(x) is estimated by
m̃(x) = b0(x), where b(x) solves the following estimating equation of order q2

0 =
1

T

T∑
t=1

KH(xt − x)(G.t(x))
′
(R̂)−1[~Y −m.t{ ~X, b(x), m̂( ~X)}], (5)

where ~Y = {Y1, · · · , YT}
′
, ~X = {X1, · · · , XT}

′
, m̂( ~X) = {m̂(X1), · · · , m̂(XT )}′ and

the lth element of m.t{ ~X, b̂, m̂( ~X)} is Gt,≤q(x)′b(x), when l = t; and is m̂(Xl), when
l 6= t.

The truncation parameter τ needs to satisfy τ(T ) = κ log T for some κ > 0 in order to
avoid serious bias is estimating the autocorrelations (Xiao et al. 2003, pg. 983, assumption
6). In practice, an optimal τ can be selected based on selection criteria as AIC and BIC
(see Xiao et al. 2003 for details). The last step of the procedure is an extension of the
marginal kernel method in Wang (2003) to the time series model. The idea is to use all
sample points in estimating m(x0) in order to reduce the variance, but points lie outside
of the local neighborhood contribute to the estimation only through their residuals. For an
optimal bandwidth H∗, one can use cross-validation to select a global bandwidth.

3 A Simulation Study

In this simulation We investigate the numerical performance of the proposed estimator (de-
noted by PE), m̃(·), and compare it to the standard local polynomial estimator (denoted by
LL) and the prewhitening estimator (denoted by PW) as in Xiao et al. (2003). The model
we consider is as follows. We take m(Xt) = sin(2Xt), where Xt is generated from a uniform
distribution on [−2, 2]. The error process ut is various special cases of the ARMA(1,1) and
AR(2), AR(4) processes

ut = α1ut−1 + εt + γ1εt−1, (6)

ut = α1ut−1 + · · ·+ αput−p + εt, for p = 2, 4 (7)

where εt is iid N(0, σ2
ε ). Various values for αp (p = 1, 2, 4), γ1 and σ2

ε are considered to reflect
various level of autocorrelations and overall scale of noise. In (7), instead of using different
values for αp to generate error process, we use different values for roots of the characteristic
function α(L) = 0. 1 We use two sample sizes T = 100 and T = 500 with 500 replications
being generated for each model specification. In each replication, the target function m(·) is
estimated at 40 fixed equally-spaced grid points within the range of X.

In implementation of the estimators, we chose the same kernel function and bandwidth
in all three estimators, i.e. Ho = H1 = H. Specifically, Gaussian density function, and a

1For the convenience of experiment design, we choose to use equal roots, i.e. G1 = · · · = Gp = G0 to
generate the autoregressive processes, where G−1

0 is the single root of the characteristic function α(L) = 0.
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“rule-of-thumb” bandwidth h = 1.06σXT
−1/5 are used throughout the simulation. In both

the PE and the PW estimators, we use local cubic regression in the first step, use local linear
regression in the third step, use the truncation parameter τ = 2.

In this simulation study, the average squared errors, denoted by ASE 2 for each estimator
are obtained. A relative efficiency based on the ratio of average squared errors are calculated,
with numerators obtained from either the standard local linear estimator (denoted by RE1)
or prewhitenning estimator (denoted by RE2) and denominators obtained from the proposed
estimator. An efficiency value above 1 indicates that our proposed estimator outperforms its
competitor and the higher the efficiency value the better is the proposed estimator. Tables
1, 2 and 3 correspond to three error structures, i.e. ARMA(1,1), AR(2) and AR(4).

Here we summarize some general findings from the simulation studies:

1. The results show that increasing sample sizes reduces ASE for all three estimators
under evaluation, which is in comply with the asymptotic results in previous research.
This also suggests that our proposed estimator is likely to be asymptotically consistent.

2. When the underlying process has a nontrivial serial correlation, our proposed esti-
mator achieves efficiency gains over both the standard local linear estimator and the
prewhitening estimator. The more serial correlation, the larger efficiency gains achieved
by our procedure over the local linear estimator. As sample size increases from 100
to 500, this efficiency gains over local linear estimator becomes more significant. Fur-
thermore, in both AR(2) and AR(4) models, the efficiency gains over the local linear
estimator increases with overall scale of noise in the error process (σ2

ε ).
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Table 1: ASE Comparison on model with ARMA(1,1) errors

n=100 n=500
Parameters ASE Efficiency ASE Efficiency
α γ LL PE PW RE1 RE2 LL PE PW RE1 RE2
0 0 0.428 0.434 0.428 0.987 0.986 0.030 0.031 0.030 0.995 0.997
0 0.25 0.445 0.445 0.444 1.000 0.998 0.029 0.029 0.029 1.009 1.003
0 0.75 0.488 0.443 0.472 1.100 1.065 0.033 0.029 0.031 1.127 1.062

0.25 0 0.440 0.438 0.441 1.004 1.007 0.031 0.030 0.031 1.017 1.015
0.75 0 0.655 0.591 0.614 1.108 1.040 0.047 0.040 0.042 1.166 1.043
0.25 0.25 0.484 0.459 0.470 1.053 1.022 0.031 0.029 0.030 1.046 1.037
0.25 0.75 0.573 0.485 0.526 1.183 1.085 0.036 0.030 0.032 1.207 1.085
0.75 0.25 1.024 0.820 0.887 1.249 1.082 0.052 0.041 0.043 1.263 1.058
0.75 0.75 1.689 1.263 1.337 1.337 1.058 0.079 0.058 0.061 1.374 1.054

Table 2: ASE Comparison on model with AR(2) errors

n=100 n=500
Parameters ASE Efficiency ASE Efficiency
G0 σ2

ε LL PE PW RE1 RE2 LL PE PW RE1 RE2
0.4 0.11 0.400 0.382 0.388 1.047 1.015 0.029 0.027 0.028 1.054 1.011
0.4 0.25 0.490 0.454 0.470 1.079 1.036 0.031 0.029 0.029 1.083 1.019
0.8 0.11 4.117 3.546 3.696 1.161 1.042 0.178 0.147 0.149 1.215 1.019
0.8 0.25 6.312 5.010 5.157 1.260 1.029 0.436 0.365 0.369 1.194 1.010
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Table 3: ASE Comparison on model with AR(4) errors

n=100 n=500
Parameters ASE Efficiency ASE Efficiency
G0 σ2

ε LL PE PW RE1 RE2 LL PE PW RE1 RE2
0.2 0.11 0.380 0.371 0.371 1.024 0.999 0.028 0.026 0.027 1.045 1.019
0.2 0.25 0.446 0.424 0.435 1.051 1.026 0.031 0.029 0.029 1.070 1.014
0.5 0.11 1.908 1.472 1.539 1.296 1.045 0.096 0.070 0.071 1.373 1.013
0.5 0.25 4.159 3.183 3.321 1.307 1.044 0.181 0.125 0.127 1.446 1.018
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