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1. Introduction

Random variable Z has a standard skew–normal (SN) distribution if its density is given
by

fZ(z; γ) = 2ϕ(z)Φ(γz), γ ∈ R, (1)

where

ϕ(z) =
e−z2/2

√
2π

and Φ(z) =

∫ z

−∞
ϕ(ξ)dξ

are the standard normal pdf and cdf, respectively. Density (1) appears in O’Hagan
and Leonard (1976) and was independently proposed and systematically investigated
by Azzalini (1985, 1986). The density (1) can be viewed as a normal pdf times a weight
factor 2Φ(γz) which depends on the asymmetry parameter γ. If γ < 0, the weight will
be larger for negative z, leading to a negatively skewed density, whereas γ > 0 results
in positive skewness. As put forward by Azzalini (1985), an interesting feature of (1),
beyond its mathematical tractability, is its “strict inclusion” of the Gaussian for γ = 0,
i.e., the Gaussian does not arise as a limit case. These features make the SN a popular
candidate for capturing the asymmetries observed in the distribution of many economic
and financial variables (e.g., Adcock and Shutes, 2005; Christodoulakis and Peel, 2009;
and Harvey et al., 2010). There is also a growing interest in the application of finite
mixtures of SN distributions (e.g., Lin et al., 2007; Lin, 2009; Frühwirth–Schnatter and
Pyne, 2010; Bernardi, 2012; Augustyniak and Boudreault, 2012; and Haas, 2010).

Application of the SN distribution in finance is also facilitated by the availability of
convenient routines for computing its cdf, as required, for example, for the calculation
of Value–at–Risk (VaR). The cdf of the SN distribution (1) can be written as

FZ(z; γ) = 2

∫ z

−∞
ϕ(ξ)Φ(γξ)dξ = 2

∫ z

−∞

∫ γξ

−∞
ϕ(ξ)ϕ(ζ)dζdξ,

which shows the close link between the cdf of the SN and that of the bivariate normal
distribution, which has been extensively studied. A recent discussion is provided by
Castellares et al. (2012). These authors also derive a power series expansion for the
quantile function of the SN distribution, which can directly be used to compute the
VaR.

Moments are frequently used to characterize the properties of a specific distribution,
such as the mean, variance, skewness, and kurtosis. Azzalini (1985) has shown that the
even moments of the SN are equal to those of the standard normal, and he also calculated
the first two odd moments. General formulas for the odd moments were provided by
Henze (1986) and Mart́ınez et al. (2008). In the next section, an alternative derivation
based on the moment generating function is provided which gives rise to an attractive
expression for the odd moments of (1); the relation between the different expressions is
also addressed.
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2. Odd moments of the SN distribution

The computation of the odd moments of the SN distribution can be based on the moment
generating function (mgf). Using a result of Ellison (1964), Azzalini (1985) showed that
the mgf of the SN distribution is

m(t) = 2et
2/2Φ(δt) = 2ψ(t)Φ(δt), δ =

γ√
1 + γ2

, (2)

where ψ(t) = et
2/2 is the mgf of the standard normal distribution. In view of the

invariance of the Gaussian function with respect to Fourier transformation there is
an intriguing similarity between (1) and (2) which can directly be exploited for the
evaluation of the moments. Let ℓ ∈ N0. Using Leibniz’ rule for the differentiation of a
product,

m(2ℓ+1)(t) = 2
2ℓ+1∑
i=0

(
2ℓ+ 1

i

)
Φ(i)(δt)ψ(2ℓ−1−i)(t)

= Φ(δt)ψ(2ℓ−1)(t) + δ

√
2

π

2ℓ+1∑
i=1

(
2ℓ+ 1

i

)
φ(i−1)(t; δ2)ψ(2ℓ−1−i)(t),

where the last equation uses the fact that

Φ(i)(δt) =
δ√
2π

di−1

dti−1

(
e−t2δ2/2

)
=

δ√
2π
φ(i−1)(t; δ2), i ≥ 1,

where φ(t; δ2) = e−t2δ2/2 is the characteristic function (cf) of the normal distribution
with mean zero and variance δ2. Hence, since the odd moments of normals with zero
mean are zero,

E(Z2ℓ+1) = m(2ℓ+1)(0) = δ

√
2

π

ℓ∑
i=0

(
2ℓ+ 1

2i+ 1

)
φ(2i)(0; δ2)ψ(2(ℓ−i))(0)

= δ

√
2

π

ℓ∑
i=0

(2ℓ+ 1)!

(2i+ 1)!(2(ℓ− i))!
(
√
−1)2iδ2i

(2i)!

i!2i
(2(ℓ− i))!

(ℓ− i)!2ℓ−i

=

√
2

π

(2ℓ+ 1)!

2ℓℓ!

ℓ∑
i=0

(−1)i
(
ℓ

i

)
δ2i+1

2i+ 1
. (3)

In applications, interest often centers on the first four moments (as required for skewness
and kurtosis); this involves the first two odd moments,

E(Z) =

√
2

π
δ, E(Z3) =

√
2

π
(3δ − δ3). (4)

From (4), central moments κi := E[(Z − E(Z))i] are

κ2 = Var(Z) = 1− 2

π
δ2, κ3 =

√
2

π

4− π

π
δ3,

κ4 = 3− 12

π
δ2 +

8π − 12

π2
δ4 = 3

(
1− 2

π
δ2
)2

+
8π − 24

π2
δ4,
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and thus the coefficients of skewness and kurtosis are (cf. Azzalini, 1985)

skew. =
κ3

κ
3/2
2

=

√
2(4− π)δ3

(π − 2δ2)3/2
, and kurt. =

κ4
κ22

= 3 +
8(π − 3)δ4

(π − 2δ2)2
,

respectively. Note that skewness is restricted to the interval (−0.995, 0.995), whereas
kurtosis is between 3 and its maximum value 3.869 which is approached as δ → ±1 (i.e.,
γ → ±∞) (Azzalini, 1985).

For further illustration, the fifth and seventh moments in the form (3) turn out to
be

E(Z5) =

√
2

π
(15δ − 10δ3 + 3δ5)

E(Z7) =

√
2

π
(105δ − 105δ3 + 63δ5 − 15δ7).

One may finally note that expression (3) for the odd moments is also obtained
(though much more tediously) by directly expanding the mgf, i.e.,

m(t) = 2et
2/2Φ(δt) = et

2/2 +

√
2

π
et

2/2

∞∑
i=0

(−1)i
δ2i+1t2i+1

2ii!(2i+ 1)

= et
2/2 +

√
2

π

∞∑
i=0

∞∑
j=0

(−1)iδ2i+1t2(i+j)+1

2i+ji!j!(2i+ 1)

ℓ=i+j
= et

2/2 +

√
2

π

∞∑
ℓ=0

t2ℓ+1

{
ℓ∑

i=0

(−1)iδ2i+1

2ℓi!(ℓ− i)!(2i+ 1)

}
.

In applications, one will typically deal with the variable Y = µ+ σZ, with µ and σ
being parameters of location and scale, respectively. The density of Y is

fY (y;µ, σ, γ) =
2

σ
ϕ

(
x− µ

σ

)
Φ

(
γ
x− µ

σ

)
,

and its moments are given by

Mn(µ, σ, γ) := E(Y n) = E{(µ+ σZ)n} =
n∑

i=0

(
n

i

)
E(Zi)µn−iσi.

3. Comparison with earlier expressions

The first general expression for the odd moments of the SN distribution was provided
by Henze (1986), who showed that an SN random variable Z has representation

Z = δ|U |+
√
1− δ2V, (5)

where U and V are independent standard normal variables. Then the binomial formula
leads to

E(Z2ℓ+1) =

√
2

π

(2ℓ+ 1)!

2ℓ
γ

(1 + γ2)ℓ+1/2

ℓ∑
m=0

m!(2γ)2m

(2m+ 1)!(ℓ−m)!
. (6)
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To directly see that (3) and (6) are identical, substitute δ = γ/
√
1 + γ2 to write the

sum in (3) in terms of γ, i.e.,

ℓ∑
i=0

(
ℓ

i

)
(−1)iδ2i+1

(2i+ 1)
=

γ

(1 + γ2)ℓ+1/2

ℓ∑
i=0

(
ℓ

i

)
(−1)iγ2i(1 + γ2)ℓ−i

(2i+ 1)

=
γ

(1 + γ2)ℓ+1/2

ℓ∑
i=0

ℓ−i∑
j=0

(
ℓ

i

)(
ℓ− i

j

)
(−1)iγ2(i+j)

(2i+ 1)

m=i+j
=

ℓ!γ

(1 + γ2)ℓ+1/2

ℓ∑
m=0

{
1

(ℓ−m)!

m∑
i=0

(−1)i

i!(m− i)!(2i+ 1)

}
γ2m.

Comparing coefficients of γ2m, equality of (3) and (6) follows from the combinatoric
identity

m∑
i=0

(
m

i

)
(−1)i

2i+ 1
=

(2mm!)2

(2m+ 1)!
=

22m(
2m
m

)
(2m+ 1)

,

which is well–known (e.g., Paolella, 2006, p. 20).
A further method for calculating the odd moments has rather recently been proposed

by Mart́ınez et al. (2008), who observed that integration by parts leads to the recursive
formula

E(Z2ℓ+1) = 2

∫ ∞

−∞
z2ℓ+1ϕ(z)Φ(γz)dz = 2ℓE(Z2ℓ−1) +

√
2

π

γ

(1 + γ2)ℓ+1/2

(2ℓ)!

2ℓℓ!
. (7)

Relation (7) also appears in Equation (2.4) in Pal et al. (2008), and Chiogna (1998)
used a similar recursion to calculate the incomplete moments of the SN distribution.

Solving recursion (7) gives

E(Z2ℓ+1) =

√
2

π

ℓ∑
i=0

2ℓℓ!

2ii!

(2i)!

2ii!

γ

(1 + γ2)i+1/2

=

√
2

π

γ

(1 + γ2)ℓ+1/2
2ℓℓ!

ℓ∑
m=0

{
ℓ−m∑
i=0

(
ℓ− i

m

)(
2i

i

)
1

22i

}
γ2m, (8)

which, by comparison with (6), gives rise to the combinatorial identity, for ℓ ≥ m,

Eℓ,m :=
ℓ−m∑
i=0

(
ℓ− i

m

)(
2i

i

)
1

22i
=

(2ℓ+ 1)!m!

22(ℓ−m)ℓ!(2m+ 1)!(ℓ−m)!
=

1

22(ℓ−m)

(
2ℓ+1
ℓ

)(
ℓ+1
m+1

)(
2m+1
m

) , (9)

which can be directly verified by straightforward calculation: Identity (9) is clearly true
for ℓ = m; for m = 0, (9) becomes

Eℓ,0 =
ℓ∑

i=0

(
2i

i

)
1

22i
=

2ℓ+ 1

22ℓ

(
2ℓ

ℓ

)
, (10)
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which is Identity (1.109) in Gould (1972).1 Along with these observations, the identity
(9) then follows from the fact that both sides of (9) satisfy the recursion

Eℓ,m = Eℓ−1,m−1 + Eℓ−1,m, ℓ > m.

E.g.,

Eℓ,m =
ℓ−m∑
i=0

(
ℓ− i

m

)(
2i

i

)
1

22i
=

ℓ−m∑
i=0

{(
ℓ− 1− i

m− 1

)
+

(
ℓ− 1− i

m

)}(
2i

i

)
1

22i

=

(ℓ−1)−(m−1)∑
i=0

(
ℓ− 1− i

m− 1

)(
2i

i

)
1

22i︸ ︷︷ ︸
=Eℓ−1,m−1

+
ℓ−1−m∑
i=0

(
ℓ− 1− i

m

)(
2i

i

)
1

22i︸ ︷︷ ︸
=Eℓ−1,m

.
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