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1. Introduction 

 

Stock futures markets provide a channel for stock holders potentially transfer risks. 

Effectiveness of such a hedging strategy relies heavily on the accuracy of hedge ratio 

estimation. Empirical literature on optimal hedge ratio calculation is predominated by 

variance-minimization approaches. This strategy consists in to choose an optimal position in 

the futures market in order to minimize spot-futures portfolio variance.  

Early research usually employs constant hedging models, such as the one-to-one ratio 

or the ordinary least squares (OLS) method (for example, Benet, 1992). However, constant 

models are criticized because they assume constant variance and covariance between spot and 

futures returns over time. Thus, nowadays, the general agreement is that time-varying hedge 

ratios based on bivariate Generalized Auto-Regressive Conditional Hesteroscedastic - 

GARCH - class models are superior to the constant models, as performed by Choudhry 

(2003), for instance. 

This kind of models is estimated under the assumption of multivariate normality or 

based some mixture of elliptical distributions. However, this assumption is unrealistic, as 

evidenced by numerous empirical studies, in which it has been shown that many financial 

asset returns are skewed, leptokurtic, and asymmetrically dependent (Login and Solnik, 2001; 

Embrechets et al., 2003). These difficulties can be treated as a problem of copulas. A copula 

is a function that links univariate marginals to their multivariate distribution.  

Regarding to dynamic hedging strategies, recent studies linked copula joint 

distributions with multivariate GARCH models, generally the Dynamic Conditional 

Correlation (DCC). This kind of models is referred as copula based GARCH models in 

literature. Hsu et al. (2008) and Lai et al. (2009) apply this type of construction for dynamic 

hedging strategies with futures.  

Nonetheless, despite flexibility, copula based models still rely on multivariate 

GARCH specifications, as well parameter estimation which can lead to some liberty loss. 

Thus, even having flexible tools one frequently faces model risk. In this sense, we present in 

this paper a dynamic hedging strategy for futures based exclusively on copula functions, 

without need for a bivariate GARCH model estimation and validation. Thus, the main 

contribution of this paper to empirical finance literature is the presentation of a new tool for 

dynamic optimal hedging with futures. Also, this is a new approach for copula methods in 

finance, once there is no such kind of research in this topic based purely on copula functions. 

 

2. Copula Methods Background 

 

For ease of notation we restrict our attention to bivariate case. The extensions to n-

dimentional case are straightforward. A function    [   ]  [   ] is a copula if, for 

       and               (      ) (      )    [   ]
    it fulfills the following 

properties: 

 (   )   (   )        (   )   (   )                                                             (1) 

 (      )   (      )   (      )   (      )                                                     (2) 

Property (1) means uniformity of the margins, while (5), the n-increasing property 

means that  (               )    for (X,Y) with distribution function C. 

In the seminal paper of Sklar (1959), it was demonstrated that a Copula is linked with 

a distribution function and its marginal distributions. This important theorem states that: 

(i) Let C be a copula and    and    univariate distribution functions. Then (3) defines 

a distribution function F with marginal    and   . 

 (   )   (  ( )   ( )) (   )    
                                                                     (3)  
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(ii) For a two-dimensional distribution function F with marginal    and   , there exists 

a copula C satisfying (3). This is unique if    and    are continuous and then, for 

every (   )   [   ] : 

 (   )   (  
  ( )   

  ( ))                                                                                    (4) 

In (4),   
        

   denote the generalized left continuous inverses of    and   . 

Regarding to the estimation, the dominant methods are traditional maximum likelihood (ML), 

pseudo-maximum likelihood (PML), proposed by Genest et al., 1995, and inversion of 

dependence measures like Spearman’s Rho and Kendall’s Tau. Chen and Fan (2006) 

developed an extension of the pseudo-maximum likelihood to markovian time series. 

  

3. Copula based Dynamic Optimal Hedge Ratio 

 

The logic of the variance minimization hedging strategy is to invest in the amount of 

futures, β, that minimizes the variance of the returns of a portfolio, consisting of the spot and 

futures position. Let   
  the return on the portfolio given by   

    
     

 . Applying the 

variance operator we have: 

   (  
 )     (  

     
 ), from variance properties we get: 

   (  
 )     (  

 )       (  
 )       (  

    
 ), Minimizing this expression 

with respect to  , we get 

     (  
 )      (  

    
 )   , isolating β, we get the closed expression for 

minimal variance hedge ratio, or optimal hedge ratio, conform (5). 

  
   (  

    
 )

   (  
 )

.                                                                                                             (5) 

In a static point of view, β is the slope OLS estimator of a linear regression. On 

dynamic approach, there is a β for each point of time, conform    
    (  

    
 )     (  

 )⁄ . In bivariate GARCH models, or even copula based GARCH 

models, terms in numerator and denominator comes from conditional covariance matrix. By 

this reason, in these approaches, the optimal hedge ration lies on model risk, even on most 

flexible copula based GARCH estimates. 

Thus, we propose the following dynamic hedging strategy based only on copula 

methods. For given estimated copula C: 

1. Simulate samples     
 ,     

  with length n for each forecast time t (day, week, 

etc.) on out-sample period; 

2. Convert     
 ,     

 
 to     

 ,     
 

 samples through inversion of marginal 

probability function F as     
     (    

 ) and     
     (    

 ); 
3. From marginal, compute spot and future returns mean and variance for each 

forecast time t:   
 ,   

 ,   
 ,   

  (note that mean and variance can be static or 

dynamic conform marginal behavior); 

4. Compute spot and future returns as     
     

      
   

  and     
     

      
   

 ; 

5. Compute the optimal hedge ratio for forecast time t as    
   (    

      
 )

   (    
 )

; 

 

As generally occurs with numerical salutations, results improve with larger values for 

n. For strategy effectiveness measurement, it is usually verified the variance reduction 

obtained with portfolio   
    

      
  over variance of the non-hedged position of 

  
 . 
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4. Empirical Illustration 

 

We collected daily data of WTI crude oil and Gold as well their respective future front 

contract from June 2009 to June 2012, totalizing 741 observations. We chose this period to 

avoid sub-prime crisis effects in estimations. Data was obtained on Commodity Exchange 

(COMEX) of the New York Mercantile Exchange (NYMEX). Figure 1 exhibits collected 

data. Vertical line represents the cut for out-sample data. Data referent to year 2012, 112 

observations, was reserved for out-sample analysis. This out-sample period is a turbulent one, 

where is most required an efficient hedging strategy.  

 
Figure 1 – Daily prices of Crude Oil and Gold from June 2010, to June 2012. Black represents 

spot contracts, while red is for future contracts. Vertical line represents division for out-

sample data. 

 

We calculated daily log-returns as prices logarithmic difference. We modeled returns 

marginal through ARMA (m,n) – GARCH (p,q) models with skewed student innovations. We 

chose model lag order and validated it through the verification of serial correlation on linear 

and squared standardized residuals through Q statistic. We standardized marginal residuals 

into pseudo-observations through ranks. Copulas estimation was made through ML which 

allows for the estimation of families with one or two parameters. For selection of the copula 

family we used AIC, which is directly linked with ML estimator. Candidate families were 

Normal, Student’s t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8. These families 

are presented in Joe (1997), for example.  

To determine if selected copula properly fits data, we applied a rank-based version of 

Cramér–von Mises statistic, discussed in Genest et al. (2009). The null hypothesis is data is 

fitted by    , a copula with vector of parameters  . With the estimated copulas, we follow the 

algorithm proposed in section 3 to obtain the dynamic optimal hedge ratio for Crude Oil and 

Gold. Results of marginal and copula estimation are presented in Table 1. Complementing, 

Figure 2 exhibits hedge ratio plots. 
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Table 1 – Results of marginal and copula models estimation for Crude Oil and Gold spot and 

future daily log-returns. 

Commodity Crude Oil Gold 

Model Spot Future Spot Future 

Marginal Est. Sig. Est. Sig. Est. Sig. Est. Sig. 

   0.0006 0.4753 0.0008 0.3017 0.0010 0.0000 0.0009 0.0357 

     - - -0.8288 0.0001 0.9582 0.0000 -0.8606 0.0000 

    - - 0.8160 0.0001 -0.9999 0.0000 0.8752 0.0000 

   0.0000 0.6366 0.0000 0.3208 0.0000 0.0812 0.0000 0.1040 

     0.0379 0.3728 0.0446 0.0962 0.0641 0.0009 0.0472 0.0032 

    0.9067 0.0000 0.9239 0.0000 0.9141 0.0000 0.9346 0.0000 

Skew 0.9128 0.0000 0.8677 0.0000 0.9508 0.0000 0.8367 0.0000 

Shape 7.2621 0.0002 10.4972 0.0097 9.5297 0.0160 6.2183 0.0001 

Q(10) Linear 4.2462 0.8343 5.3812 0.7163 7.0422 0.5321 10.1822 0.2527 

Q(10) Squared 7.2371 0.5113 9.3322 0.3151 9.3602 0.3128 7.6923 0.4641 

Copula         

Family Student t    BB1    

Parameter 1 0.9763 0.0000   0.3226 0.0001   

Parameter 2 1.7419 0.0000   1.6685 0.0000   

GoF test 0.4348 0.9911   0.0433 0.5813   

OLS ratio 1.0366    0.6288    

Var. Red. (%) 90.3212    14.3854    

 

 
Figure 2 – Crude Oil and Gold dynamic optimal hedge ratios during out-sample period. 

Horizontal line represents OLS optimal hedge ratio. 

 

Analyzing the marginal pattern is out of paper scope. However, we note marginal 

models proper fit data, as pointed by Q statistics and significant innovations distribution 
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parameters. Regarding to dependence structure, Crude Oil spot and future returns have joint 

behavior conform Student copula, while Gold follows a BB1 family. Both Crude Oil and 

Gold copula parameters obtained statistical significance. Further, copulas were validated by 

goodness of fitness test, indicating adherence to data. 

 About hedging strategy, there is difference in optimal ratio magnitude between two 

commodities. Crude Oil obtained a bigger value, indicating one needs more resources to 

properly hedge a Crude Oil spot position than a Gold spot position. Figure 2 indicates OLS 

hedge ratio underestimate real optimal position because dynamic copula strategy, with 

exception for a short period of Gold out-sample series, always overcome OLS ratio. Crude Oil 

is more volatile than Gold as it has more oscillation in its dynamic ratio. This corroborate 

with distinction on variance reduction, which reached 90% for Crude Oil and 14% for Gold. 

This variance reduction is the goal of any hedging strategy. It indicates dynamic proposed 

approach can significantly reduce variability intrinsic to spot position, even on a turbulent 

period as our chosen out-sample. Thus, one can properly protect its spot position from 

variability derived from shocks during interest period.  

 

5. Conclusion 

 

 We present in this paper a dynamic hedging strategy for futures based exclusively on 

copula functions. We developed an algorithm based on numerical simulations from estimated 

copula and marginal probability function to obtain innovations. With this innovations 

associated with mean and variance from marginal, we get simulations for spot and future 

returns. So, one directly get an optimal hedge ratio for each day on forecast period based on 

variance and covariance of these simulations. We illustrate our approach with an empirical 

example with Crude Oil and Gold. In sum, OLS static estimate showed itself improper and 

the proposed algorithm obtained very good results in spot/future variance reduction strategy. 
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