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1. Introduction 

Portfolio Optimization in Asset Management is the problem of selecting the composition of a 

portfolio in order to pursue a given objective, generally involving both return maximization 

and risk minimization. The basic Index Tracking (IT) problem, in particular, aims at selecting 

a portfolio, possibly with a small number of assets, that best tracks the performance of a 

given index or benchmark. Extensive reviews in the literature on this problem can be found in 

Beasley et al. (2003) and, more recently, in Canakgoz and Beasley (2008) and in Scozzari et 

al. (2012). A more ambitious task is that of out-performing a given index or benchmark. This 

problem has been recently addressed with various approaches under the name of Enhanced 

Indexation (EI) or Enhanced Index Tracking (see Canakgoz and Beasley 2008, and references 

therein), and the portfolio selected in this case is sometimes called Enhanced Indexation 

Portfolio (EI portfolio). The return obtained in excess w.r.t. the index is called excess return. 

Note that, in general, no guarantee of always reaching a positive excess return can be given, 

so the risk of under-performing the index always exists. EI models are usually built and 

validated using the price data of n assets and of the benchmark index over a time period. In 

order to simulate practical usage, a part of this time period is considered as the past (and so it 

is known), and the rest is considered as the future (unknown at the time of portfolio 

selection). The past (called in-sample) is used for finding the EI portfolio, while the future 

(called out-of-sample) can only be used for testing the performance of the selected portfolio. 

Enhanced Indexation is a relatively recent area of research, and quantitative approaches 

have been mainly developed in the last decade. Alexander and Dimitriu (2005) propose to 

extend Index Tracking into Enhanced Indexation by generating, with a cointegration 

approach, portfolios for tracking two artificial indexes: the index plus a constant and the 

index minus the same constant. They attempt to generate excess returns by selling the plus 

tracking portfolio and purchasing the minus tracking portfolio. Konno and Hatagi (2005) 

compute a portfolio that keeps track of an index-plus-alpha portfolio with minimal 

transaction costs. The problem is formulated as a concave minimization under linear 

constraints and is solved with a branch and bound algorithm. Canakgoz and Beasley (2008) 

consider both Index Tracking and Enhanced Indexation problems, viewing the returns of the 

tracking (or enhancing) portfolios as depending on benchmark index returns, and perform 

linear regression. For Enhanced Indexation they propose a two-stage optimization problem 

using a mixed-integer linear programming formulation. Guastaroba and Speranza (2012) use 

a heuristic approach (called Kernel Search) for solving mixed-integer linear programming 

models for IT and EI including also cardinality, buy-in, and transaction costs constraints. 

They evaluate the efficiency and accuracy of their heuristic by comparing it with a standard 

exact solver. 

In our opinion, there are three main limitations in the majority of existing approaches. 

First, EI bi-objective models (or their scalarizations) based on minimizing tracking error and 

maximizing excess return contain a slight contradiction: the first goal penalizes both positive 

and negative deviations from the index while, on the other hand, one seeks to maximize 

excess return, i.e. a positive tracking error. This contradiction derives from the use of a 

symmetric distance measure, which is not suitable for controlling the distance between the 

returns of the portfolio and those of the benchmark in EI. Thus an asymmetric distance 

measure should be used. Furthermore, EI is a computationally demanding task (see Roman et 

al. 2011) and several proposed models are too complex for being practically solved to 

optimality for medium or large size problems. Finally, several authors do not test their 

models on publicly available datasets, so comparison is often impracticable. 

Recent promising approaches, on the other hand, are those based on Stochastic Dominance 

criteria, which imply optimality with respect to large families of utility functions (see, e.g., 
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Nguema 2005). A practical approach for large Markets has been developed by Roman et al. 

(2011) who apply a Second order Stochastic Dominance (SSD) strategy (see also Fabian et 

al. 2011) to construct a portfolio whose return distribution dominates the one of a benchmark. 

The proposed model is very large but linear and is solved efficiently with cutting planes 

techniques. 

We present here a new Linear Programming model for selecting an optimal portfolio 

within the stochastic dominance approach. In particular, in Section 2.1 we propose a new 

stochastic dominance condition, called Cumulative Zero-order Stochastic -Dominance 

(CZSD), that seems to be one of the strongest stochastic dominance conditions that one 

could use for portfolio selection in practice. This model uses an asymmetric measure of the 

tracking error that only minimizes the downside deviations from the benchmark index. In 

view of its large size, our model is solved to optimality by using a constraint generation 

approach as described in Section 2.2. This approach allows for efficient solution of the basic 

model, and reasonable computational complexity when adding further complicating 

constraints coming from real-world practice such as cardinality constraints. We observe that 

the number of assets in a portfolio seems to be related to required level of excess return (see 

Cesarone et al. 2012). For this reason, in Section 2.2 we decided to add a constraint on the 

required excess return both in the model realizing CZSD and in the one realizing SSD 

proposed by Roman et al. (2011). Computational results are reported in Section 2.3 for eight 

major stock markets across the world using data sets publicly available in Beasley (1990). A 

rolling window method is used to evaluate the performance of the selected portfolio over all 

time periods. Results are very encouraging and show that portfolios selected by our model 

have a good out-of-sample performance, and exhibit several useful properties. Finally, some 

conclusions and further research are provided in Section 3. 
 

2. The Enhanced Indexation Problem 

 

Selecting a portfolio over   available assets means deciding how much of each asset   should 

be purchased, with            . Asset prices     (adjusted for dividends and splits) are 

observed for     time periods with             and are used to compute over the set 

          the returns 

 

    
         

     
                             

 

For    , the fraction of the given capital to be invested in asset   is denoted by    and the 

vector              represents the selected portfolio. For            , the observed 

value of the benchmark (e.g., the Market Index) at time t is denoted by   . The Index returns, 

are thus given by  

 

  
  

       

    
                               

 

Adopting a standard approximation, we assume that the portfolio return at time   is 

  

      ∑   
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so that the excess return, i.e., the difference between the portfolio return and the index return, 

is given by  

              
                                      

 

which can assume any real value. Clearly,         signals underperformance while 

        signals overperformance at time  .  

 

 

2.1 Stochastic Dominance 
 

The portfolio returns       and benchmark returns   
  can be considered the t-th realizations 

of two discrete random variables, namely Portfolio Return (PR) and Benchmark Return (BR), 

respectively. Thus, the excess return       is the t-th realization of the random variable PR- 

BR. Two random variables may be compared by means of the Expected Utility Theory (von 

Neumann and Morgenstein 1944) for which a variable is preferred to another if it presents a 

larger value of the expected utility than the other. However, this approach depends on a 

specification of a utility function, which is a fairly subjective matter. Stochastic Dominance 

(SD) is strictly related to Expected Utility Theory and it can provide a (partial) order in the 

space of random variables, avoiding the specification of a particular utility function.  

 

Let   and   be two random variables defined in a probability space, and let    and    be 

their realizations at time  . Denote by    and    their probability density functions, and by 

      ∫   
 

  
      and       ∫   

 

  
      their cumulative distributions. The 

comparison between   and   can be conducted by using a Stochastic Dominance approach. 

We recall the following well-known definitions:  

 Zero-order (strong) Stochastic Dominance (ZSD):   is preferred to   w.r.t. ZSD iff 

         and the inequality is strict for at least one  . This means         .  

 First-order Stochastic Dominance (FSD):   is preferred to   w.r.t. FSD iff       
               , and the inequality is strict for at least one  .  

 Second-order Stochastic Dominance (SSD):   is preferred to   w.r.t. SSD iff 

∫   
 

  
      ∫   

 

  
               , and the inequality is strict for at least 

one  .  

 

Referring to the Expected Utility Theory, there are relations between the order of the 

stochastic dominance conditions and the form of the utility functions involved. For example, 

the FSD condition is connected to the class of non-decreasing utility functions, while the SSD 

condition relates to non-decreasing and concave functions, which represent an investor risk-

averse behavior (see, e.g., Levy 1992).  

More generally, any    -order stochastic dominance can be defined. When increasing the 

order of a stochastic dominance, the corresponding condition becomes less restrictive, and the 

   -order dominance implies the        -order dominance, while the opposite is not 

necessarily true (see, e.g., Levy 2006). In view of the above discussion, the ZSD is the 

strongest condition, and therefore one should aim for a portfolio whose in-sample return is 

preferred to the benchmark return w.r.t. ZSD. However, this condition cannot be fulfilled in 

practice otherwise arbitrage opportunities would arise (Meucci 2005). We therefore relax 

ZSD and propose the following new conditions:  

 Zero-order stochastic -dominance (ZSD):   is preferred to   w.r.t. ZSD iff      
     , and the inequality is strict for at least one  . This means           .  

 Cumulative Zero-order stochastic -dominance (CZSD):   is preferred to   w.r.t.  
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CZSD iff  ∑         ∑           .  

 

Coming back to the case of EI,    is preferred to    w.r.t. ZSD iff  

 

                                                

 

and the inequality is strict for at least one  . This means that       can be negative for some 

of the in-sample time periods (i.e., a loss), but in any case their values cannot be smaller than 

–   (the loss is limited). On the other hand, PR is preferred to BR w.r.t. CZSD iff 

 

∑  

   

                                        

 

This means that ∑          can be negative for some subsets of the in-sample time periods 

(i.e., a cumulative loss), but in any case the value of the above sum cannot be smaller than - 

(the cumulative loss is limited). It is easy to see that CZSD implies ZSD, so it appears to be 

the strongest condition that a real-world portfolio could satisfy in practice under a no-

arbitrage assumption. 

 

 

2.2 The Optimization Model 

 

Among all portfolios that are preferred to the Market Index with respect to the CZSD 

criterion, we are interested in the one(s) having the smallest absolute value for . This can be 

obtained by solving an optimization problem in term of the above introduced decision 

variables   . Seeking the smallest absolute value for   clearly amounts to maximizing -, 
while the above stochastic dominance conditions can be imposed as constraints that we here 

call limiting constraints. As usual, we also require the budget constraint (∑        ), the 

no-short-selling condition      
 , and we allow for the possibility of a set   of other further 

linear constraints. We thus obtain the following Linear Programming problem 

 

{
 
 
 
 

 
 
 
 
      

∑  

   

           

∑  

   

  

    
    

         

 

                  

 

Note that the number of limiting constraints is exponential: one for every subset S of T. Thus, 

in order to practically solve this very large model, we use a constraint generation framework 

(see also Bertsimas and Tsitsiklis 1997) as follows. First we solve the Linear Program 
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{
 
 
 
 
 

 
 
 
 
       
        
   
        

∑  

   

  

    
    

        

                                              

 

over the in-sample set T, obtaining an optimal solution    and values     
   for each tT. 

Then, if we can find a set of time periods B such that 

 

∑   

     

                                             

 

this means that there is a limiting constraint that is violated. Therefore, according to the 

constraint generation framework, we search for such a violated limiting constraint by means 

of a separation procedure. When such a set B is obtained, we generate the following 

constraint and add it to the previously solved model:  

 

∑   

     

                                            

 

We then solve the updated model, obtaining a new solution, and we iterate the procedure. 

After a number of generated constraints, a solution     is found such that a set B 

corresponding to a violated limiting constraint does not exists. This means that     is the 

portfolio that is preferred to the Market Index w.r.t. CZSD.  

The separation procedure can be realized by means of a so-called oracle that, for a given 

  , either returns a constraint violated by   or guarantees that no constraint is violated by   . 

The oracle is implemented here by solving the following Integer Programming problem, 

where  is a numeric tolerance:  

 

{
 
 
 

 
 
     ∑  

   

    
  

∑  

   

    
                              

          

 

 

To try to improve the stochastic dominance models, we decided to add a constraint on the 

minimum required excess return both in the model realizing CZSD and in the one realizing 

SSD proposed by Roman et al. (2011). To this end, we force the total in-sample return to be 

at least a fraction k[0,1] (called return level) of the maximum obtainable total in-sample 

return R
max

 of a portfolio 
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∑  

   

                                             

 

This is mainly intended to cut away low gain solutions, but we found that it also has the 

effect of limiting the number of assets in the solution without explicitly introducing a 

cardinality constraint. 

 

 

2.3 Computational Results 
 

The described approaches have been preliminary tested using a rolling time window scheme, 

with 200 in-sample periods and 12 out-of-sample periods, and rebalancing every 12 periods 

(= 3 months). We use publicly available datasets (Beasley 1990) from Beasley’s OR-Library 

(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html) frequently used in studies on 

portfolio management. They include weakly price data from March 1992 to September 1997 

for the Hang Seng (Hong Kong), DAX100 (Germany), FTSE100 (UK), S&P100 (USA), 

Nikkei 225 (Japan), S&P500 (USA), Russell 2000 (USA) and Russell 3000 (USA) capital 

market indices, with 31, 85, 89, 98, 225, 457, 1318 and 2151 assets, respectively. Such prices 

have previously been adjusted for dividends and splits. The return rates for these eight 

markets have been computed as relative variations of the quotation prices (              ). 

The historical realizations consist in 290 rates of return.  

In order to evaluate performance, for each dataset we compare our EI portfolios (CZSD 

portfolios), to the EI portfolios obtained by the original model introduced in Roman et al. 

(2011) (original SSD portfolios), and to the original SSD portfolios modified by the 

introduction of the minimum excess return constraint (modified SSD portfolios). We 

therefore report, in the following 3 figures, the portfolio values on the whole sequence of the 

out-of-sample data for: 

 

 the CZSD portfolios with return level k = 0.8 (‘CZSD_0.8’ in red), 

 the original SSD portfolios (‘SSD_FMR11’ in green), 

 the modified SSD portfolios with return level k = 0.8 (‘SSD_0.8’ in blue), 

 the Market Index considered as benchmark (‘Benchmark’ in black). 
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Figure 1: Comparison between CZSD_0.8, SSD_FMR11, SSD_0.8 and Benchmark on DAX100 

dataset (German stock market) 

 
 

 

Figure 2: Comparison between CZSD_0.8, SSD_FMR11, SSD_0.8 and Benchmark on 

FTSE100 dataset (UK stock market) 
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Figure 3: Comparison between CZSD_0.8, SSD_FMR11, SSD_0.8 and Benchmark on S&P100 

dataset (USA stock market) 

 
 

We observe that the proposed CZSD portfolios with return level k = 0.8 (in red) produce the 

best out-of-sample values for the considered datasets, closely followed by the modified SSD 

portfolios with return level k = 0.8 (in blue). 

We moreover analyze, in the following 2 tables, the overall out-of-sample performance of 

the same approaches on all the 8 datasets. In particular, Table 1 reports the average difference 

between the portfolio values and the Market Index. For each dataset (row), the best result is 

in bold face. The CZSD portfolios with return level k = 0.8 produce the best result in half of 

the cases, while each of the other two portfolios considered produces the best result in one 

fourth of the cases. 

 
Table 1: Average differences between out-of-sample portfolio values and the Benchmark (the best 

result in each row is in bold face) 

 

 SSD_FMR11 

 – Benchmark  
CZSD_0.8  

– Benchmark 

SSD_0.8  

– Benchmark 

HS31 -2.19 5.95 2.17 

DAX100 0.84 29.21 22.02 

FTSE100 -4.61 7.92 5.50 

SP100 -3.32 23.03 21.50 

NIKKEI -5.00 -6.39 0.14 

SP500 25.30 8.85 8.95 

RUSSEL2000 34.61 16.89 39.19 

RUSSEL3000 47.44 16.21 37.38 
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Table 2 reports an analysis based on the Sharpe index, defined as the average value of       

divided by its standard deviation, which is undefined when negative. The proposed CZSD 

portfolios with return level k = 0.8 give again the best result in half of the cases, followed, 

this time, by the original SSD portfolios and then by the modified SSD portfolios with return 

level k = 0.8. 

 
Table 2: Out-of-sample Sharpe index (the best result in each row is in bold face) 

 

 
SSD_FMR11 CZSD_0.8  SSD_0.8 

HS31 0.0108 0.0578 0.0270 

DAX100 - 0.1470 0.0534 

FTSE100 - 0.1283 0.0820 

SP100 - 0.1323 0.1188 

NIKKEI 0.0245 - 0.1330 

SP500 0.2392 0.0469 0.0783 

RUSSEL2000 0.2161 - 0.1437 

RUSSEL3000 0.2689 0.0665 0.1960 

 

 

 

3. Conclusions and Further Research 

 

Stochastic dominance approaches to the Enhanced Index Tracking problem seem to be very 

attractive both from a theoretical and from a practical viewpoint.  However,  they lead to 

large-size models that need to be solved with adequate techniques like the constraint 

generation procedure developed in this work. In this paper we proposed a model based on 

new approximate stochastic dominance relations and we compared it with a state-of-the-art 

stochastic dominance model for Enhanced Indexation on publicly available datasets finding 

encouraging results. The reported results refer to the case of equity investments, but, in 

principle, the proposed approach can be applied to other types of assets such as derivatives or 

bonds, possibly considering their prices directly.     

From a theoretical viewpoint, in an extended version of this paper we plan to study in 

greater depth the relation between the -stochastic dominance conditions introduced here and 

the Expected Utility Theory. Moreover, the model computationally analyzed in this paper, 

adopting classical short sale constraints, could be modified for better capturing further real 

market conditions (see, e.g., Bottazzi et al. 2012). From a practical viewpoint, the tuning of 

the required return (risk) level for each different in-sample window will be investigated. 
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