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1. Introduction 
 

Global optimization endeavors to find the optima of the functions that are non-linear, non-

differentiable, non-convex or multimodal, sometimes having multiple global optimum and 

numerous local optima, posing insurmountable difficulties before the classical methods of 

optimization. One encounters such problematic functions in engineering, sciences, operations 

research, statistics, economics, etc. Since the mid-1950s, efforts have been made to search for a 

suitable method that addresses the problem of global optimization of such problematic functions. 

 

In the pre-1975 years, the works of Box (1957), Nelder and Mead (1964) and Box (1965) were 

remarkable. However, the invention of the “Genetic Algorithm” by Holland (1975) ushered an 

era of research in global optimization. Invented in the subsequent years, the “Clustering Method” 

of Törn (1978), the “Simulated Annealing Method” of Kirkpatrick et al. (1983)  and Cerny 

(1985), the “Tabu Search Method” of Glover (1986), the “Ant Colony Algorithm” of Dorigo 

(1992), the “Particle Swarm Method” of Kennedy and Eberhart (1995), the “Differential 

Evolution Method” of Storn and Price (1995), and the “Generalized Simulated Annealing 

method” of Tsallis and Stariolo (1995) are notable and effective methods of global optimization. 

Some other recently proposed methods such as the “Harmony Search” of Geem et al. (2001), the 

“Bee System” of Lŭcíc and Teodorovíc (2001), the “Bee Swarm Optimization” of Karaboga 

(2005) and Karaboga and Basturk (2007), etc. also are quite promising.  Teodorović et al. (2011) 

is a rich source of information on “Bee Colony Optimization”.   

 

Yang and Deb (2009) proposed a new method of global optimization based on the behavior of 

cuckoos that are parasitic in laying their eggs in the nests of other birds (such as crows) who 

serve as hosts to hatch their eggs to chicks. It was shown that the so-called “Cuckoo Search” 

algorithm may prove to be quite effective for global optimization. Subsequent investigations 

made by Yang and Deb (2010), Civicioglu and Besdok (2011), Rajabioun (2011) and Valian et 

al. (2011) further demonstrated that the “Cuckoo Search” algorithm, in its original or improved 

version, may be very effective. The method has been tested on a large battery of benchmark 

(test) functions of varied difficulty levels.   

  

The original “Cuckoo Search algorithm” of Yang and Deb (2009) or its variants (or its improved 

versions) is based on the idea of how cuckoos lay their eggs in the host nests, how, if not 

detected (and destroyed), the eggs are hatched by the hosts, how the cuckoo chicks later join the 

population of cuckoos and how a mathematical representation of all these can be used to search 

for the global optimum of a function.  In brief, the algorithm may be conceptually summarized in 

the following four idealized rules (Yang and Deb, 2009): 

1. Each cuckoo lays a single egg into a randomly chosen host-nest, while there are n nests; 

2. The nests with better quality eggs (implying better fitness value of the optimand 

function), if not detected, would be hatched to be the cuckoo chicks, who would join the 

next generation; 

3. The number of available host nests is fixed.  The host can detect the alien egg with a 

probability [0, 1] and, if detected, it will either destroy the egg or abandon the nest so as 

to build a new nest elsewhere;   

4. When generating new solutions ( ( 1)t

ix   ) from the old one  ( ( )t

ix ),  Lévy flight is performed 

with the parameter 1 3   and, thus, ( 1) ( ) ( )t t

i ix x Levy    ; for, say cuckoo i ; 
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(1)O  and  means entry-wise multiplication (or the Hadamard product operator). The 

Lévy flight endows a cuckoo with a capability to take a random walk which has a power 

law step length distribution with a heavy tail. It has been found (Brown et al., 2007; 

Pavlyukevich, 2007) that Lévy flights characterize an appropriate type random walk in 

many real life situations (Viswanathan et al., 1996; 1999; 2002). 
  

2. The Objective of this Paper 

 

It may be noted that the “Cuckoo Search” algorithm has nothing to say as to how the host birds 

will regenerate their nests in view of the parasitic intruders (cuckoos) and how the two (the 

cuckoos and the hosts) will co-evolve. The probability of detection also is an exogenously fixed 

number. Thus, the host birds are immune to the experience of invasion by the parasite cuckoos. 

However, Davies and Brooke (1989a; 1989b) and Lotem et al. (1995) observe that co-evolution 

does take place and the arms race theory (Dawkins and Krebs, 1979) would suggest that, in the 

long run, hosts should evolve good discrimination ability (and the probability of detection as 

high as 65%), forcing the cuckoos to switch to a new, non-discriminating host (Davies and 

Brooke, 1989b; Rothstein, 1990). In view of this, in a given area, where the cuckoos and the 

hosts interact, the rate of rejection would increase over time. Both the cuckoos and the hosts also 

change their strategies.  

 

The objective of this paper is, therefore, to incorporate the co-evolutionary changes into the 

“Cuckoo Search” algorithm and test the efficiency of the two populations (of the parasites, say 

cuckoos and the hosts, say crows) in finding the global optimum of some benchmark functions. 

This new suggested algorithm may be called the “Host-Parasite Co-evolutionary” or HPC 

algorithm. 

 

3. The Proposed HPC Algorithm 

 

For simplicity, let there be a parasites population (say, cuckoos) and a hosts population (say, 

crows). Each individual parasite as well as individual host would be represented by a point.  

These points will be randomly generated and would lie in the domain of the function to be 

minimized. Accordingly, smaller value of the function implies better fitness. Each parasitic 

individual will take a random flight (Gaussian/Cauchy/Burr-xii or Lévy flight with some 

probability) and if its post-flight fitness is better than its pre-flight fitness (failing which it would 

not make an attempt to lay any egg in the host nest and thus would retain its old status), then it 

will randomly choose a host net that has not as yet been invaded by another parasite and where 

the quality of the host eggs are inferior to the parasite egg. The eggs of the parasite, however, 

may be detected by the host and destroyed. If not detected, however, the nestling, after being 

hatched in the host nest, would join the parasite population. Only the best parasites, however, 

will enter into the next generation. The algorithm may be outlined as follows: 

 

1. At the start, randomly generate cn parasite individuals ( ( )tx ) and kn host individuals ( ( )ty ) 

as the points in the m  dimensional domain of the function (.)f  to be optimized. Evaluate 

them for ( )( )tf x and ( )( ).tf y Arrange each population (of the parasites and the hosts) such 

that ( ) ( ) ( )

1 2( ) ( ) ... ( )t t t

ncf x f x f x   and ( ) ( ) ( )

1 2( ) ( ) ... ( )t t t

nkf y f y f y   .  It may be noted, however, 
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that such an arrangement is not necessary for the algorithm to work.  At this stage, the 

parenthesized superscript ( )t takes on a value of zero ( 0t  ) that denotes initialization. 

2. Let each parasite individual ( )t

ix  randomly choose a host individual ( )t

jy
 
and make an 

effort to update itself  in each of its m  coordinates in view of (i) a random flight, (ii) a 

random direction ±, and (iii) difference between its own coordinates and the chosen 

host‟s (corresponding) coordinates. That is, ( ) ( ) ( )t t t

i i ix x x   if 
( ) ( ) ( )( ) ( ),t t t

i i if x x f x  where 

the random flight ( ) ( ) ( )( ) ( )t t t

i j ix a r y x   
 
for each coordinate of ( )t

ix . More explicitly 

stated, ( ) ( ) ( ). . ( ).( )t t t

ik k k k jk ikx a r y x    for 1,2,..., .k m  Here r  is an array of uniformly and 

independently distributed random numbers in ( 0.5, 0.5), a is an array of independent 

(1/ 2) -distributed random numbers in (0,1)  and ( )   is an array  of independent random 

numbers that effects a random flight (such as Gaussian, Cauchy, Burr-xii or Lévy). Each 

of the three arrays of random numbers ( ,r a  and ( )  )  has m  elements. The symbols   

and  stand for „is replaced by‟ and Hadamard or „element-wise‟ multiplication 

respectively. However, if ( ) ( ) ( )( ) ( ),t t t

i i if x x f x   then ( )t

ix  maintains its status quo. 

3. Let each parasite, ( ) ,t

ix  that improved itself in step 2 above make an attempt to lay its eggs 

in the nest of a randomly chosen host, ( ) ,t

jy  provided that (i) the chosen host net does not 

as yet contain any parasite eggs, (ii) ( ) ( )( ) ( )t t

i jf x f y and (iii) the attempt is not foiled by 

the chosen host. The host population has an evolving detection function. 

4. Based on the success of individual parasites  in step 3 above, ( ) ,tp the probability of the 

success of the parasite population over-the-generations is updated (elaborated in the sub-

section below).  

5. The host individuals update themselves as in step 2 above ( ( ) ( ) ( )t t t

i i iy y y   if 
( ) ( ) ( )( ) ( )t t t

i i if y y f y  ), but using a flight with slightly different parameters such that the 

random flight ( ) ( ) ( )( ) ( ).t t t

i j iy x y       Here   is an array of uniformly and 

independently distributed random numbers in ( 0.5, 0.5),  is an array of independent 

(1/ 2) -distributed random numbers in (0,1)  and ( )  is an array  of independent random 

numbers that effects a random flight (such as Gaussian, Cauchy, Burr-xii or Lévy). Each 

of the three arrays of random numbers ( ,   and ( )  ) has m  elements. If 
( ) ( ) ( )( ) ( ),t t t

i i if y y f y   then ( )t

iy  maintains its status quo. 

6. Arrange each population (of the parasites and the hosts) such that 
( ) ( ) ( )

1 2( ) ( ) ... ( )t t t

ncf x f x f x   and ( ) ( ) ( )

1 2( ) ( ) ... ( )t t t

nkf y f y f y   .  It may be noted that such an 

arrangement is not necessary. 

7. The superscript ( )t takes on a value incremented by 1. 

8. Go to step 2 if the termination conditions are not met. 

 

3.1. The Detection function of the Parasite Eggs by the Host 
 

The parasites are able to survive to the next generation, first, if their eggs survive the detection 

by the host and, secondly, if they beget smarter offspring. The value of ( ) ,tp  the probability of 

surviving the detection of their eggs laid in the host nest at generation (or iteration) t , is an over-

the-generations cumulative probability given as ( ) ( )

1
/ ( )

tt g

s cg
p n t n


  while ( ) ( ) ( )g g g

s u c cn n n n   or  
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the ratio of the total number of all successful parasite individuals over the generations ( ( )g

sn ;

1,g t ) to the total number of  all successful ( ( )

1

t g

sg
n

 ) plus unsuccessful ( ( )

1

t g

ug
n

 ) parasites 

over the generations, each generation having cn individuals. Over the generations, ( )tp  decreases 

while ( 1)tpd 

 increases. In turn, ( )tpd  affects the success rate of the parasites (and therefore ( 1)tp  ) 

in the next generation making the system co-evolutionary. This is modelled on the basis of 

observations in the real world that suggest an „over-the-generations‟ increasing incidence of 

detection of the parasite eggs by the host population, ultimately forcing the parasites to shift to 

new or different hosts who have not yet adapted themselves to the skills of the parasites. 
 

Table-1. Comparison of Alternative Detection Functions in HPC (with Levy Flights) 

for Search of Optimal Values of the Weierstrass Function of Different Dimensions (D) 

D Gompertz Logistic Logit Linear 
Opt 

value 

SD T Opt 

value 

SD T Opt 

value 

SD T Opt 

value 

SD T 

10 8.63E-11 1.04E-11 1.355 8.16E-11 1.21E-11 1.338 8.24E-11 9.01E-12 1.382 8.75E-11 1.27E-11 2.283 

20 9.00E-11 7.04E-12 4.607 9.21E-11 7.73E-12 4.587 1.21E-10 7.62E-11 4.771 8.98E-11 6.71E-12 4.610 

30 9.50E-11 3.81E-12 10.382 9.23E-11 9.16E-12 10.294 1.89E-10 2.23E-10 10.721 9.33E-11 3.53E-12 10.323 

40 9.45E-11 3.50E-12 19.327 9.55E-11 2.84E-12 19.457 1.78E-10 1.76E-10 19.568 9.48E-11 5.39E-12 19.409 

50 9.55E-11 5.33E-12 32.551 9.51E-11 3.25E-12 33.082 9.55E-11 4.88E-12 33.166 1.05E-10 2.03E-11 32.772 

60 9.49E-11 5.50E-12 52.172 9.65E-11 3.87E-12 51.651 9.70E-11 2.97E-12 51.894 9.61E-11 2.60E-12 51.944 

70 9.58E-11 3.11E-12 78.580 9.66E-11 3.25E-12 78.279 9.71E-11 2.64E-12 76.993 9.91E-11 1.03E-11 78.509 

 

The detection function, ( 1) ( )( )t tpd p  , of the parasite eggs by the host may be a linear function 

such as ( 1) ( )(1 )t tpd p    or a sigmoid function such as logistic function                                         

( ( 1) ( ) 1

0 (1 exp( ))t tpd p      ), logit function ( ( 1) ( ) ( )ln( / (1 ))t t tpd p p    ) or Gompertz function    

( ( 1) ( ) 1exp[ 2exp{ (1 ln(1 )) }]t tpd p      ) with  the scaling factor  in (0,1)  and the constant 0  in 

(0,1).  As it has been reported in Table-1, there is no clear advantage in using the one function 

over the other, although there is a weak indication that the Gompertz detection function may 

provide more consistent results. 

 

3.2. Choice of the Random Flight-Generating Function 
 

Among many possible choices that may be made regarding the flights taken by the parasites (and 

the host), Burr-xii, Cauchy, Gaussian or Lévy distribution (or any one among many others)  may 

be worth consideration for specifying (.).  A graphical presentation of 1000 points in 2-

dimensional space for these distributions is given in Fig.-1. Of these, Burr-xii, Cauchy and Lévy 

distributions are heavy-tailed. It has been found (Viswanathan et al. 1999; Gutowski, 2001; 

Pavlyukevich, 2007; Yang and Deb, 2009) that the random flights generated by heavy-tailed 

distributions, especially the Lévy distribution, perform better in escaping a convergence to local 

optima and also are frequently observed in the animal behavior. This has been corroborated by 

optimizing some select test functions (Table-2) where Lévy flights obtain best values most 

consistently, followed by Cauchy flights (that obtain the worst value only once) and Burr-xii 

flights. Gaussian flights perform worst. These findings suggest that Lévy and Cauchy flights may 

be used alone or in conjunction, with lager (say 95%) and smaller (5%) probabilities, 

respectively. 
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Fig.-1. Scatter of 1000 Points in 2-D Under Different Distributions Effecting Random Flights 

  

 
 

. 
 

Table.-2. Performance of Some Select Benchmark Functions  

with Different Types of Random Flight 
Function 
 (Dimension) 

Gaussian Flight Burr-xii Flight Lévy Flight Cauchy Flight 

Mean SD Mean SD Mean SD Mean SD 

Giunts (2) 0.0644704444 9.313E-10 0.0644704444 0 0.0644704444 0 0.0644704444 0 

Easom (2) -1 0 -1 0 -1 0 -1 0 

Trefethen (2) -3.30686865  7.300E-08 -3.30686865 7.300E-08 -3.30686865  7.300E-08 -3.30686865  7.30E-08 

Levy-8 (3) 6.737666E-13 2.528E-13 7.24103E-13 1.919E-13 6.531185E-13 2.637E-13 5.001159E-13 2.40E-13 

Perm-1 (4) 1.506391E-07 4.34E-07 1.570331E-09 2.232E-09 5.054093E-09 9.077E-09 3.688489E-08 1.22E-07 

Shekel (4) -8.4538657 2.403221 -8.79373249 2.2544213 -9.81333288 1.271665 -10.1531997 2.06E-07 

Hougen (5) 0.331174304 0.0070644 0.319942193 0.0110459 0.323038786 0.0068002 0.314789813 0.008429 

Powel (8) 4.535538E-07 1.477E-07 5.100929E-07 1.506E-07 3.673879E-07 1.780E-07 4.81744E-07 1.89E-07 

ANNS-XOR (9) 0.959758757 1.054E-08 0.959758757 1.490E-08 0.959758757 0 0.95975899 5.96E-07 

Schwefel (10) -2003.66884 804.4180 -4189.82887 0.000136 -4189.82887   0.000136 -4189.82887   0.000136 
Quintic (10) 1.651056E-08 3.904E-08 4.43242E-06 1.378E-05 1.550833E-07 5.799E-07 1.742966E-06 4.79E-06 

Ackley (10) 9.178140E-13 9.178E-13 9.123665E-13 7.843E-14 8.974451E-13 8.383E-14 9.441041E-13 4.75E-14 

Michalewicz (10) -9.59941626 0.0363532 -9.6594969 0.001669 -9.66015172 1.686E-07 -9.66015172 2.06E-07 

Rosenbrock (10) 0.0131510732 0.0166608 6.577238E-07 4.440E-07 1.847974E-07 3.806E-07 9.488363E-13 4.21E-14 
Trigonomet (10) 2.208646E-05 2.471E-05 2.654573E-06 8.816E-06 1.015045E-07 2.695E-07 2.236183E-10 7.41E-10 

Lunacek (10) 27845.7836 65956.24 12258.8264 15213.408 8.569804E-13 9.285E-13 10269.5682 14671.83 

Weierstrass (20) 9.431271E-13 4.15E-14 9.066525E-13 6.578E-14 9.412323E-13 5.899E-14 9.369690E-13 3.87E-14 

Keane-Bump (60) -0.805173227 0.009944 -0.829840357 0.0037952 -0.836701304 0.001166 -0.836449067 0.001199 

Note: Results based on 15 trials. Max run time and no. of agents in search are presented in Table-4. The worst values are in the italics and  
the best values are in bold. Mean is the arithmetic average and SD stands for standard deviation. (accuracy level = 1.0e-12). 
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3.3. Complexity and Mean Time of Successful Search by the HPC Algorithm 
 

In Table-3 we present the mean search time and the associated statistics of the proposed HPC 

algorithm and compare them with the DE search algorithm. The Weierstrass function, well 

known for being „everywhere continuous but nowhere differentiable‟ and having a theoretically 

known min value = 0 in [0,1], has been used as a test case. The success of the two algorithms is 

adjudged if the search outcome is very close to the minimum value (less than 1.0e-10). For HPC 

we have used 60 agents  ( 30; 30c kn n   for all dimensions)  and Lévy flight alone. For DE we 

have used dimension-dependent number of agents, since it is suggested that the number of agents 

must not be less than four times the dimension of the function to be optimized, although, very 

often, this factor is 10, rather than the minimal four. We have used this factor = 10 (Brest et al., 

2006). It may be reported in passing that for dimension = 60, the DE often fails when the number 

of agents is merely 4D =240. Except for the dimensions 40, 50, 60 and 70, for which the DE 

works for 5, 5, 3 and 3 replicates respectively (since it demands a long time for 15 replications), 

both the algorithms have been used to obtain 15 replicates and mean-time and mean-near-

optimum values are reported for the same.  

 

For the HPC algorithm we get 2 29.369546 0.8418 0.026538 ; 0.9963T D D R     and for the DE we 

get 2 2210.513 21.3076 0.5143 ; 0.9802T D D R     as relationships between dimension (D) and the 

mean time (T) required for successfully searching the near-optimal value of the Weierstrass 

function.  It may be noted that while the DE suffers from the „curse‟ of dimensionality (as it 

requires the number of agents to increase with dimension), the HPC does not have such 

limitation. All these computations (as well as elsewhere in this paper) are carried out on an HP 

Desktop Personal Computer with 2.4 GHz Core-2 Duo CPU. The computation time (T) is the 

CPU time in seconds (obtained by calling the internal function CPU_TIME(.) in FORTRAN 77 

providing computation time up to microseconds).  
 

Table-3. Mean CPU Time of Execution for Search of Optimal Values of the 

Weierstrass Function of Different Dimensions by HPC and DE Algorithms 
Sl 

No. 
Dim 

T = Mean(time) SD(time) Mean(opt-value) SD(opt-value) 

HPC DE HPC DE HPC DE HPC DE 
1 10 1.3552 5.45521 0.0315 0.01451 8.62563E-11 0 1.04434E-11 0 

2 20 4.6073   20.6792 0.0857 0.07326 9.00149E-11 2.43484E-11 7.03629E-12 1.35562E-11   

3 30 10.3823 91.31875 0.1315 0.04067 9.49669E-11 0 3.80977E-12 0 

4 40 19.3271 200.91(5)   0.2726 0.06203 9.45344E-11 4.26326E-14 3.50301E-12 2.54211E-14   

5 50 32.5510 374.416 (5)   0.4144 0.21392 9.54780E-11 5.68434E-13 5.32514E-12 3.28144E-13 

6 60 52.1719 716.677 (3) 0.5352 127.51 9.49276E-11 3.76562E-05 5.49780E-12 5.32539E-05 

7 70 78.5802 1298.81(3) 0.6424 230.66 9.58096E-11 0.00276423   3.11242E-12 0.003904219   

8 80 114.318 NO 1.3412 NO 9.61942E-11 NO 4.30669E-12 NO 

Notes: (i) CPU time in seconds, (ii) Opt-value = nearest optimal value for 1.0e-10 accuracy requirement (except DE for D=60 and 70), 
(iii) Mean time for DE for Dim = 40 and 50 is for 5 replicates; for Dim = 60 and 70 for 3 replicates. Elsewhere Mean time is for 15 
replicates. NO = Not Computed due to large run-time requirement. Only Lévy flights are used for HPC.  .   

 

4. Performance of the HPC Algorithm on Some Benchmark Functions 

 

To test the effectiveness of the proposed HPC algorithm we have used 32 benchmark functions 

(Table-4). Many of the selected benchmark functions are quite difficult to optimize (Mishra, 

2010; 2006a; 2006b). Some functions, namely Lunacek (Dieterich and Hartke, 2012), modified 
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Lunacek, Eggholder, Keane, ANNS XOR, Easom, Perm-1, Perm-2, Hougen, AMGM, 

Michalewicz, etc are quite hard to optimize. 

 

For each benchmark function, the proposed HPC and the Differential Evolution (DE) algorithm 

are run 15 times with different random number seeds and for varying time limits for the search 

run to terminate. In all cases, the population of agents in the HPC is constant (30 for host and 30 

for parasite). In case of DE, however, the population of agents is 10 times the dimension of the 

function concerned. 
 

4.1. Relative Performance of the HPC 

 

Relative performance of an optimization algorithm that yields its best value ( 1v ) with respect to 

the best value known ( 0v ) and the best value obtained by another competing algorithm ( 2v ) may 

ordinarily be measured as 1 0 2 0( ) / ( )v v v v  . However, when 0v  and 2v are zero (and more so when 

1v  also is zero), this measure may not be computable. Furthermore, computationally, such a 

measure of performance may be unstable (and perhaps misleading) when 1v or 2v  is near-zero, 

viz. 1( ) 1.0 10;abs v E  2( ) 1.0 10abs v E  . Therefore, we propose that, first, near-zero values may be 

considered as zero and, secondly, the relative measure of performance ( c ) be obtained as 

exp( )c b a  , where 1 0( )a abs v v  and 2 0( ).b abs v v  This measure, ,c would take on a value of 

unity if the proposed and the competing algorithms are performing equally well and less than 

(greater than) unity if the former performs worse (better) than the latter. Accordingly, in Table-4, 

we find that for Easom, Power-Sum, Hougen, Perm-2 and Kene-Bump, the HPC performs better 

than the DE. For Shekel, Quintic, Rosenbrock, Lunacek and Mod-Lunacek, the HPC performs 

worse than the DE and, in particular for the Eggholder function, the performance of HPC is 

dismal. For the rest (21 benchmark functions), HPC and DE perform equally well. 

 
 

Table-4. Global Optimum of Select Benchmark Function Obtained by 

Differential Evolution (DE) and Host-Parasite Co-Evolution (HPC) Algorithms 

Function 
(Dimension) 

Best Value 
Known 

Mean 
Value (15 runs) 

Standard 
Deviation (15 runs) 

Efficiency 
of HPC ( c ) 

No. of 
Agents 

CPU Time 
(in second) 

Giunta(2)    0.0644704444 0.0644704444 0 1 (30, 30) 2/2 

0.0644704444 9.31322575E-10 1 (30, 30) 2/1.8667 

0.0644704444   0 - 20 2/0.0010 

Easom(2)   -1 -1 1.82501207E-08 2.718276 (30, 30) 2/2 

-1 1.82501207E-08 2.718276 (30, 30) 2/0.0073 

2.16055169E-06 4.46970101E-06 - 20 5/0.0615 

Trefethen(2)    -3.306869 -3.30686865 7.3000483E-08 1 (30, 30) 2/2 

-3.30686865 7.3000483E-08 1 (30, 30) 2/2 

-3.30686865 7.3000483E-08 - 20 2/ 0.0395 

Shubert(2)    -186.730909 -186.730909 2.6973983E-06 1 (30, 30) 2/2 

-186.730909 2.6973983E-06 1 (30, 30) 2/2 

-186.730909 3.81469727E-06 - 20 2/ 0.0406 

Levy-8(3)   0 4.8663378E-13 2.56378772E-13 1 (30,30) 1/0.0094 

4.68290849E-13 2.90351267E-13 1 (30,30) 1/0.0094 

1.49966072E-32 1.49966072E-32 - 30 2/0.0177 

Hartmann(3)   -3.86277761 -3.86277761 1.1151008E-07 1 (30,30) 2/2 

-3.86277761 1.1151008E-07 1 (30,30) 2/2 

-3.86277761 1.1151008E-07 - 30 2/ 0.0563 

Perm-1(4)    0 5.15007117E-09 8.98582283E-09 1 (30,30) 60/60 

4.57128986E-08 9.4498728E-08 1 (30,30) 60/60 
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1.91395519E-14 6.0483572E-14 - 40 60/0.1313 

Power-Sum(4)    0 2.18300406E-07 3.86356388E-07 1.009052 (30,30) 10/9.7521 

4.71195971E-07 1.01879405E-006 1.009051 (30,30) 10/10 

0.00901106704 0.010173588 - 40 10/ 0.1281 

Wood(4)   1.094854 1.09485393 1.49011612E-008 1 (30,30) 2/2  

1.09485393 1.49011612E-08 1 (30,30) 2/2  

1.09485393 2.10734243E-08 - 40 2/0.0469 

Shekel(4)    -10.4832696 -9.81333288 1.27166511 0.511741 (30,30) 10/10 

-9.47346609 1.73298743 0.36429 (30,30) 10/10 

-10.4832696 1.68587394E-07 - 40 10/0.05625 

Colville(4)   0 1.00374576E-12 2.13129483E-14 1 (30,30) 5/3.8104 

1.23403554E-12 6.76298926E-13 1 (30,30) 5/3.7323 

0 0 - 40 5/ 0.0698 

Hougen(5)   0.298901 0.32307247 0.0119201832 1.010182 (30,30) 10/10 

0.315743327 0.0133511609 1.017613 (30,30) 10/10 

0.333202566 0.0568826927 - 50 10/ 0.2813 

Glankwahmdee(5)   -739.822991 -739.822991 0 1 (30,30) 2/2 

-739.822991 1.07895932E-05 1 (30,30) 2/2 

-739.822991 1.52587891E-05 - 50 2/0.1677 

Powel(8)   0 3.32358613E-07 1.89058359E-07 1 (30,30) 10/10 

4.56407089E-07 1.42100592E-07 1 (30,30) 10/10 

1.82599811E-15 3.78464179E-15 - 80 10/ 0.0917 

ANNS-XOR (9)   0.959759 0.959758757 1.82501207E-08 1 (30,30) 3/3 

0.959758757 1.82501207E-08 1 (30,30) 3/3 

0.959758757 1.49011612E-08 - 90 10/ 2.3938 

Quintic(10)   0 3.81976838E-06 1.42583882E-05 0.999996 (30,30) 10/4.1917 

7.99360578E-13 1.77635684E-13 1 (30,30) 10/4.0521 

0 0 - 100 10/ 0.1802 

Perm-2(10)   0 0.00484731748 0.0180073135 1.024009 (30,30) 10/10 

4.48718087E-05 3.1249553E-05 1.028939 (30,30) 10/10 

0.0285727536 0.023623502 - 100 10/4.9031 

AMGM(10)   0 7.33396949E-10 2.86802073E-010 1 (30,30) 10/10 

6.85353416E-10 3.31775455E-10 1 (30,30) 10/10 

5.12102751E-14 1.01167967E-13 - 100 10/0.1458 

Griewank(10)   0 8.62850532E-13 1.14947296E-13 1 (30,30) 1/0.1396 

7.83151322E-13 1.8979903E-013 1 (30,30) 1/0.1479 

4.69624339E-14 9.08976143E-14 - 100 2/0.3385 

Rastrigin(10)   0 7.97110526E-13 1.48411705E-13 1 (30,30) 1/0.3719 

8.47677484E-13 1.52556134E-13 1 (30,30) 1/0.3938 

0 0 - 100 2/ 0.2365  

Ackley(10)   0 8.92234434E-13 9.18815984E-14 1 (30,30) 2/0.2042 

9.23498315E-13 5.69538405E-14 1 (30,30) 2/0.2104 

2.07241631E-16 8.86202492E-16 - 100 2/0.3281 

Michalewicz(10)    -9.66015172 -9.66015172 2.06476546E-007 1 (30,30) 2/2 

-9.66015172 2.06476546E-07 1 (30,30) 2/2 

-9.66015172 1.1920929E-07 - 100 2/0.6177 

Schwefel(10)   -4189.829 -4189.82887 0.000136478758 1 (30,30) 3/3 

-4189.82887 0.000136478758 1 (30,30) 3/3 

-4189.82887 0.000136478758 - 100 3/0.3115 

Paviani(10)   -45.77848 -45.7784755 0 1 (30,30) 2/2 

-45.7784755 1.16800773E-06 1 (30,30) 2/2 

-45.7784755 0 - 100 2/0.3302 

Rosenbrock(10)   0 8.28664889E-07 1.72367926E-06 0.999999 (30,30) 10/10 

1.77119335E-07 3.82418968E-07 1 (30,30) 10/10 

4.59534037E-14 1.41867338E-13 - 100 10/0.2333 

Trigonometric(10)   0 6.23321862E-10 2.29366091E-09 1 (30,30) 2/0.9698 

6.32433549E-12 1.42523336E-11 1 (30,30) 2/0.6948 

2.01553787E-14 7.48937185E-14 - 100 2/ 0.4354 

Lunacek(10)   0   0.114383586 0.427984188 0.891916 (30,30) 3/0.8448 

 7.99827695E-13 1.43589822E-13 1 (30,30) 3/0.8448 

1.23819177E-13 2.51442617E-13 - 100 3/0.2844 

Mod-Lunacek(15)   0 20.0436728 2.45420149 5.58E-09 (30,30) 5/5 

20.3890035 4.72483206 3.95E-09 (30,30) 5/5 

9



Economics Bulletin, 2013, Vol. 33 No. 1 pp. 1-18

 

20.3890035 4.72483206 - 150 5/3.2896 

Eggholder(15)   
  

-12875.5766 -12111.6066 513.576372 0 (30,30) 60/60 

-12351.9542 340.858877 0 (30,30) 60/60 

-12472.523 240.801769 - 150 60/ 5.6792 

Trid(20)   -1520 -1520 0 1 (30,30) 12/12 

-1520 0 1 (30,30) 12/12 

-1520.   2.15791864E-05 - 200 12/1.0583 

Weierstrass(20)   0 8.47914331E-13 9.864922E-14 1 (30,30) 10/5.0854 

9.22284471E-13 8.95095853E-14 1 (30,30) 10/5.2823 

0 0  - 200 35/31.0510 

Keane-Bump(60)  
  

 Not known -0.836201 0.00130014145 1.146462 (30,30) 60/60 

-0.837407863 0.000787192094 1.147846 (30,30) 60/60 

-0.69952056 0.0118118307 - 600 130/73.367 

For every benchmark function the first two rows relate to HPC with mixed flights. Row-1 relates to Lévy flights (with probability = 95%) 
and Cauchy flights (with probability = 5%) and row-2 relates to Lévy flights (with probability = 95%) and exp(Cauchy) flights (with 

probability = 5%). The third row relates to DE. For HPC agent (nc, nk) =(parasite, host) populations and for DE the no. agents is 10 D. As 
to run time, T refers to CPU time allowed/time taken. The 15 random number seeds used are: 45331, 44431, 44421, 44401, 45671, 
53277, 34567, 23171, 98267, 49821, 11387, 17869, 12352, 12017 and 10501. Minimum accuracy for termination is 1.0E-12. 

 

4.2. A Constrained Optimization Case when the HPC Clearly Outperforms the DE 
 

In particular, a mention may be made of the Keane‟s Bump function, which makes a well known 

nonlinear constrained optimization problem hard to optimize. Its optimal values for different 

dimensions are not known. Mishra (2007a) obtained the value of min(Keane(60)) =                      

-0.835835669 by the DE algorithm and min(Keane(60)) = -0.837746743 by the Repulsive 

Particle Swarm algorithm. The HPC algorithm obtains min(Keane(60)) =  -0.838309996 (using 

parasite and host populations of 50 each and allowing for 200 seconds of run), which is better 

than both (but not yet optimal). The coordinates of the min(Keane(60)) are given in Table-5.  In 

this regard, therefore, the performance of the HPC algorithm is remarkable. 
 

Table-5. Coordinates of the Keane’s Bump Function  

(Dimension = 60) obtained by HPC Algorithm 
6.292849 6.245672 3.176372 3.139257 3.135303 3.138552 3.116267 3.103339 3.088621 3.082445 

3.076263 3.063221 3.043688 3.037078 3.026641 3.019054 2.992814 3.002117 2.982061 2.981301 

2.934628 2.945212 2.945505 2.926539 0.485694 0.482363 0.475488 0.483270 0.472872 0.481436 

0.456696 0.478872 0.489860 0.468501 0.472842 0.472607 0.445679 0.463993 0.458094 0.441825 

0.447224 0.435700 0.449929 0.454840 0.460273 0.452506 0.451221 0.463613 0.442843 0.430523 

0.451609 0.417102 0.441924 0.432519 0.431536 0.435202 0.421458 0.425350 0.442531 0.436222 

 

5. An Application to Financial Economics  
 

In financial economics, correlation matrices are very important objects of study that make one of 

the cornerstones of Markowitz‟s theory of optimal portfolios (Laloux et al., 1999). Their 

relevance in financial analysis is demonstrated in Chesney and Scott (1989), Heston (1993), 

Schöbel and Zhu (1999), Xu and Evers (2003), Andersen et al. (2006), Münnix et al. (2012), etc. 

Correlation matrices are also used to forecast demand for a group of products (Tyagi and Das, 

1999). There are three oft-studied issues with regard to the correlation matrices of financial 

variables: their relationship with the random matrix theory (Markowitz, 1952; Ormerod and  

Mounfield, 2000; Bouchaud and Potters, 2003; Potters et al., 2005), the best resolution of an 

invalid (non-positive semi-definite) correlation matrix into a valid (positive semi-definite) 

correlation matrix (Rebonato and Jäckel,1999; Higham, 2002; Anjos et al., 2003; Pietersz and 

Groenen, 2004; Grubisic and Pietersz, 2004; Mishra, 2004, etc.) and completion of an 
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incomplete correlation matrix having some elements missing (Grone et al., 1984; Barett et al., 

1989; Helton et al., 1989; Johnson, 1990; Barett et al., 1998; Laurent, 2001; Kahl and Günther, 

2005, Mishra, 2007b, etc.). 

 

The problem of completing the (incomplete) correlation matrix admits non-unique solution, and, 

therefore, some authors have suggested numerical methods that provide ranges to different 

unknown elements of the incomplete correlation matrix. Stanley and Wang (1969), Glass and 

Collins (1970), Olkin (1981) and Budden et al. (2007) have suggested very efficient methods to 

find such ranges for the unknown elements of very small correlation matrices (of order 4 or less). 

Candés and Recht (2008) approaches the completion problem by convex optimization. Mishra 

(2007b) provides a routine based on a stochastic search through the Differential Evolution 

method of global optimization. 

 

Semi-definite completion of an incomplete correlation matrix (Nagy et al. 2012) may yield a 

result matrix with zero determinant implying that at least one of the financial variables 

generating such a matrix is entirely redundant. This is clearly unrealistic.  Therefore, in this 

exercise we choose the problem of completing an incomplete matrix by the elements that 

maximize the determinant of the resulting full and valid (positive definite) correlation matrix. 

Johnson (1990) has pointed out that a determinant-maximizing positive-definite completion 

result of an incomplete (correlation) matrix is unique. Furthermore, if the vacant cells (occupied 

by the unknown ,ijr   call them 
ijr ), are filled by the determinant-maximizing 

îjr
 

then the 

corresponding cell(s) of 1ˆS R  would have 0ijs  . We exploit this property in our determinant-

maximizing positive-definite matrix-completion exercise.  

 

Table-6. Correlation Matrix (R) of Daily Stock Returns of 10 Companies 

Traded at the New York Stock Exchange During 2001-2003. 

 AIG IBM BAC AXP MER   TXN SLB MOT RD OXY 

AIG 1.000 0.413 0.518 0.543 0.529 0.341 0.271 0.231 0.412 0.294 

IBM   0.413 1.000 0.471 0.537 0.617 0.552 0.298 0.475 0.373 0.270 

BAC   0.518 0.471 1.000 0.547 0.592 0.400 0.258 0.349 0.370 0.276 

AXP  0.543 0.537 0.547 1.000 0.664 0.422 0.347 0.351 0.414 0.269 

MER   0.529 0.617 0.592 0.664 1.000 0.533 0.344 0.462 0.440 0.318 

TXN 0.341 0.552 0.400 0.422 0.533 1.000 0.305 0.582 0.355 0.245 

SLB  0.271 0.298 0.258 0.347 0.344 0.305 1.000 0.193 0.533 0.592 

MOT 0.231 0.475 0.349 0.351 0.462 0.582 0.193 1.000 0.258 0.166 

RD   0.412 0.373 0.370 0.414 0.440 0.355 0.533 0.258 1.000 0.591 

OXY 0.294 0.270 0.276 0.269 0.318 0.245 0.592 0.166 0.591 1.000 

Source: Tumminello, M. et al. (2010), p. 42 (For details see ttp://arxiv.org/pdf/0809.4615v1.pdf) 

 

Tumminello et al. (2010) provide the correlation matrix (reproduced in Table-6) of daily stock 

returns of 10 companies [namely American Intl Group Inc.(AIG),  Intl Business Machines 

(IBM), Bank Of America (BAC), American Express Co.(AXP), Merrill Lynch (MER), Texas 

Instruments (TXN), Schlumberger (SLB), Motorola (MOT), Royal Dutch Pet New (RD) and 

Occidental Petroleum (OXY)] traded at the New York Stock Exchange during January 2001 

through December 2003 (748 records), in order of their market capitalization in December 2003. 
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Of these, three stocks (OXY, RD, SLB) belong to the energy sector, three (IBM, MOT, TXN) to 

the technology sector and four (AIG, AXP, BAC, MER) to the financial sector. The determinant 

of this correlation matrix [det(R)] is 0.0126676649. 
. 

Table-7. Recovery of Missing Elements in  

Completing the Incomplete Correlation Matrix Problem 
Expt No. and Identification of 

elements obliterated/recovered 
True Values  

(
ijr ) 

Recovered  

Values(
îjr ) 

Determinant 
(HPC) 

Determinant 
(DE) 

Mean CPU 
Time (sec) 

1 1 (
12r ) and (

21r ) 0.413 0.392534767 0.0126851733 
(0) 

0.0126851733 
(0)  

15 [HPC] 
 9.38333 [DE] 

2 2 ( 23 24,r r ) and ( 32 42,r r ) 0.471  
0.537 

0.42034691 
0.45737954 

0.0130451433 
(4.0327E-10) 

0.0130451433 
(4.0327E-10)  

15 [HPC] 
18.36875 [DE] 

 

3 3 (
39 3,10 4,10, ,r r r ) and  

(
93 10,3 10,4, ,r r r ) 

0.370  
0.276 
0.269 

0.337466825 
0.243398150 
0.308257729 

0.0128140987 
(0) 

0.0128140987  
(2.8516E-10)  

15 [HPC] 
28.09375 [DE] 

4 4 (
39 3,10 45 4,10, , ,r r r r ) and  

( 93 10,3 54 10,4, , ,r r r r ) 

0.370  
0.276 
0.664 
0.269 

0.343885015 
0.245786265 
0.514544702 
0.306210076  

0.0142362378 
(0) 

0.0142362378 
(3.2927E-10)   

16 [HPC] 
57.3375 [DE] 

5 4 (
39 3,10 45 4,10 9,10, , , ,r r r r r ) and 

(
93 10,3 54 10,4 10,9, , , ,r r r r r ) 

0.370 
 0.276 
0.664 
0.269 
0.591 

0.343885015 
0.241710106 
0.514544702 
0.289174414 
0.365359770 

0.016442216 
(2.3283E-10) 

0.016442216  
(4.0327E-10)  

16 [HPC] 
73.45625 [DE] 

Note: Reported CPU  time and determinants are arithmetic mean of 15 trials with the standard deviation in the parentheses.   

 

We obliterate the elements of this matrix ( ijr and jir R ) progressively (but arbitrarily) and use 

HPC and DE algorithms to recover them (as if we did not know them) – amounting to an 

exercise in completing the incomplete correlation matrix. Our findings are presented in Table-7. 

HPC as well as DE maximizes determinants although DE takes much more time than HPC.  

 

The determinant-maximizing (positive-definite) completion of (an incomplete) correlation matrix 

is introducing some sort of linear independence between the financial variables i and j that is 

described by the missing 
ijr and is filled by 

îjr making the determinant-maximizing R̂ matrix. This 

is opposite to the possibly determinant-zeroing exercise (making the matrix a positive semi-

definite) that may yield a result matrix with zero determinant implying redundancy of some 

financial variables. In view of the random matrix theory (Potters et al., 2005), the determinant-

maximizing solution is preferable to its counterpart. 

 

6. Concluding Remarks 

 

The HPC is a co-evolutionary  algorithm. It becomes co-evolutionary on two accounts. First that 

both – the parasites and the hosts take random flights in view of themselves and their randomly 

selected cohort at each iteration/generation (
( ) ( )y  and xt t

j j ) affecting and being affected by the 

cohort population. This is mainly competitive. Secondly, at every subsequent iteration, the egg 

detection (rejection) function of the hosts, ( ( 1)tpd  ), that depends on the cumulative success of the 

parasites, ( ( )tp ), increases and, in turn, affects ( 1)tp  . This is co-evolutionary in nature. The details 
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are available in the Fortran codes (downloadable from http://nehu-economics.info/computer-

programs/cuckoo_host.txt). 

 

It appears that the performance of the HPC algorithm is comparable to the DE algorithm, which 

is perhaps the most efficient algorithm for global optimization (of continuous valued non-convex 

functions). In particular, the HPC algorithm does not suffer from the „curse of dimensionality‟ 

while the DE does. Yet, the HPC algorithm requires further probe into its behavior. 

Investigations are required in selecting appropriate detection function, type of random flight and 

a more effective strategy to enhance convergence. 

 

In the HPC algorithm both the hosts and the parasites make attempts to optimize. In case of 

many functions (whose results have not been presented here, but they are available in the Fortran 

code mentioned earlier), the hosts perform better than the parasites, and in case of some other 

functions both perform equally well. In fewer cases, however, the parasites perform better than 

the hosts. It is not yet understood as to the reason behind such occurrences. It requires further 

investigation. 
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