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1 Introduction

The local polynomial regression in the presence of correlated errors has attracted much of
attention in recent research. Consider the following regression model

Yt = m(Xt) + εt for t = 1, · · · , T (1)

where m(·) is a smooth and otherwise unknown function which is of our main interest in es-
timation. The error process {εt, t ∈ Z} is autocorrelated and satisfies E(εt|X1, · · · , XT ) = 0
almost surely. The setting arises in many economic studies where data are gathered sequen-
tially as times series therefore can not be assumed as independent. Marsry (1996), Masry
and Fan (1997), Härdle and Tsybakov (1997) study the standard local polynomial smoother,
which by construction does not take into consideration the dependence across the observa-
tions, in model 1 with random-design. Francisco-Fernndez and Vilar-Fernndez (2001) and
Opsomer and Yang (2001) study the standard local polynomial regression in model (1) but
with fixed-design. In both cases the local polynomial estimator has a variance proportional
to the marginal variance of εt. Practitioners accustomed to correcting standard errors for
dependence usually believe that adjusting for the dependence should improve the estima-
tion accuracy, as in parametric regression. Vilar-Fernndez and Francisco-Fernndez (2002)
propose a modification on local polynomial regression by including a “GLS weighting” for
autocorrelation in the criterion function. The resulting estimator, however, does not im-
prove the asymptotic properties. Xiao et al. (2003) and Martins-Filho and Yao (2009) study
a two-stage “pre-whitening” procedure based on transforming the initial kernel regression
residuals into a white noise process. They show that the resulting estimator reduces the
variance over the conventional kernel estimator, up to the first order.1

In this paper we propose a natural modification of local polynomial procedure for esti-
mating m(·) in model 1 that takes into consideration the correlation structure of the error
terms. To illustrate the main idea, we assume that the error process {εt, t ∈ Z} follows an
AR(1) type correlation structure. The proposed procedure is highly intuitive in its construc-
tion and is easy to compute, compared to the “pre-whitening” method. More importantly,
the proposed kernel estimator has a smaller variance compared to the conventional local
polynomial estimator while maintain the same bias, up to the first order. In this sense it is
asymptotically more efficient. The paper is structured as follows. The proposed procedure
is introduced in Section 2 and its asymptotic properties is studied in Section 3. We conclude
the paper in Section 4.

2 The Model and the Estimator

Suppose in model (1) the error process {εt, t ∈ Z} follows εt = ρεt−1 + et where |ρ| < 1
and {et, t ∈ Z} is a white-noise process with finite variance σ2

e . Let X = (X1, · · · , XT )
′

1There is a related literature regarding kernel regression on longitudinal or panel data. See Severini and
Staniswalis (1994), Ruckstuhl et al. (2000), Lin and Carroll (2000), Wang (2003) and Chen and Jin (2005),
among others.
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and similarly for Y , ε. In addition let m(X) = (m(X1), · · · ,m(XT ))
′
. The covariance

matrix of the error process is E(εε
′
) = σ2

eΣ where Σ = [νjk]
T
j,k=1 with νjk = 1

1−ρ2ρ
|j−k|.

Since Σ is positive definite, there exists a nonsingular matrix P such that P
′
P = Σ−1. The

standard local polynomial regression aims at the pth polynomial expansion of the regression
function at a local point, m(x) ≈ Gp(X − x)

′
β, where Gp(υ) = {1, υ, · · · , υp}′ and β =

{β0, · · · , βp}
′

is a vector of Taylor expansion coefficients. Let h denote the bandwidth and
K(·) a symmetric kernel function defined on a compact support, normalized without loss
of generality to have unit variance. Define Kh(υ) = h−1K(υ/h) and Gp(x) = {Gp(X1 −
x), Gp(X2 − x)), · · · , Gp(XT − x)}′ . To focus on the main idea and keep the paper concise,
we let Xt be a scalar. Meanwhile we also concentrate on the local linear regression setting, i.e.
p = 1, so the subscript for the order of polynomial in Gp(·) can be skipped. In the standard

local linear regression, m(x) is estimated by m̃(x) = β̃0(x) with β̃(x) = {β̃0(x), β̃1(x)} defined
as

β̃(x) = {G(x)
′
K(x)G(x)}−1G(x)

′
K(x)Y

where K(x) = diag{Kh(Xt − x)}Tt=1. Martins-Filho and Yao (2009) show that the m̃ has a
variance

V arX(m̃(x)) =
1

Th

σ2
εγ(0)

f(x)
+ op(

1

Th
) =

1

Th

σ2
eγ(0)

(1− ρ2)f(x)
+ op(

1

Th
) (2)

Note that when the errors are highly correlated, i.e. ρ is close to 1, the variance given above
can be very large. In order to utilize the dependence structure in the model, we propose to
estimate m(x) by m̂(x) = β̂0 with β̂(x) = {β̂0(x), β̂1(x)} defined as

β̂(x) =
{
G(x)

′
1xP

′
K(x)P1xG(x)

}−1
G(x)

′
1xP

′
K(x)P1xY = (BT )−1CT (3)

where the 1(x) = diag{1(Xt−x
h

)}Tt=1, and 1(·) is an indicator function defined on the same
support as the kernel function, K(·). Note that in (3), the indicator matrix 1x and kernel
matrix K(x) are placed on either side of the correlation matrix P in order to select only those
elements in P corresponding to observations within the same bandwidth with the local point
x on which m(·) is estimated. Meanwhile, note that in most practical situations β̂(·) is not
feasible because the matrix P is unknown and needs to be estimated. A method of moment
estimator for P can be obtained by substituting ρ by its method of moment estimator ρ̂, i.e.

ρ̂ =

∑T−1
t=1 ε̂tε̂t+1∑T
t=1 ε̂

2
t

(4)

where ε̂t = Yt − m̃(xt) , 1 ≤ t ≤ T , are residuals from a standard local linear regres-
sion. A feasible version of the proposed estimator for m(x) is m̂∗(x) = β̂∗0(x) with β̂∗(x) =
{β̂∗0(x), β̂∗1(x)} defined as

β̂∗(x) =
{
G(x)

′
1xP̂

′

K(x)P̂1xG(x)
}−1

G(x)
′
1xP̂

′

K(x)P̂1xY = (B̂T )−1ĈT (5)

where it is assumed that (B̂T )−1 exists.
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3 Asymptotic Properties

The asymptotic analysis of the proposed estimator is focused on the bias and variance ap-
proximation. We assume that the error process {εt} is independent of the process {Xt}. To
facilitate the asymptotic analysis, the following assumptions are made on the kernel function,
the bandwidth h, the independent variable Xt and the conditional mean function m(x).

Assumption 1 KernelK(·) is a symmetric and bounded kernel density function defined on
[−1/2, 1/2] and it has a unit variance. Let µ(r) =

∫
φrK(φ)dφ, µ1(r) =

∫
φr1(φ)dφ and

γ(r) =
∫
φrK2(φ)dφ < ∞, r = 1, 2, · · · , then we have µ(r) = µ1(r) = 0 for odd r and

µ(2) = 1;

Assumption 2 As T →∞ we have Th→∞ and h→ 0;

Assumption 3 The second derivative of m(·) exists and it is continuous, denoted as m
′′
(·);

Assumption 4 The regressor {Xt, t ∈ Z}, is a stationary process. The marginal density
of Xt, denoted by f(x) and the joint density, denoted by ft,t−1(Xt,Xt−1) are continuous and
bounded both from above and away from zero.

The asymptotic bias and variance of the infeasible version of the estimator are given in
Theorem 3.1.

Theorem 3.1 Given assumptions A1 to A4 and suppose x is an interior point on the
support of f(·), the bias and variance of the proposed estimator m̂(x) can be approximated
as follows:

The bias is:

EX {m̂(x)−m(x)} =
1

2
h2µ(2)m′′ + op(h

2) (6)

The variance is:

V arX (m̂(x)) = (Th)−1
σ2
eγ(0)

f(x)
+ op(

1

Th
) (7)

The proof is given in the appendix. We make three remarks on this result.
Remark 1: The leading term in the bias of m̂(x) in (6) is the same as that of the standard

local linear estimator. Meanwhile the variance of m̂(x) in (7) is proportional to σ2
e , while the

conventional local linear smoother has a variance proportional to σ2
ε = σ2

e/(1 − ρ2) , which
is strictly greater than σ2

e except when ρ = 0, i.e. errors are independent. This argument
holds for all the values of x, regardless of the values of m′′(·) and ρ. Hence m̂(·) is more
efficient in the sense of achieving smaller mean square errors (MSE) uniformly. The relative
efficiency gain measured by MSE increases with correlation level.

Remark 2: The asymptotic variance of the “GLS-weighting” estimator proposed in Vilar-

Fernndez and Francisco-Fernndez (2002) is proportional to σ2
e

(1−ρ)2 , which is same as that of the
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standard local linear estimator and strictly larger than variance of the proposed estimator.
In this sense our proposed estimator is more efficient asymptotically.

Remark 3: The “pre-whitening” procedure in Xiao et al. (2003) and Martins-Filho and
Yao (2009) has the same asymptotic bias and variance as m̂(·) when an under-smoothing
bandwidth, h0, is used in the first-stage regression, i.e. h0/h → 0 as T → ∞. However,
when h0 = h, the asymptotic bias of pre-whitening estimator is much more complex and it
depends on the values of m′′(x) and ρ. Numerically it can potentially be greater than the
bias in (6). In this sense, the “pre-whining” estimator does not outperform the conventional
standard local linear estimator uniformly.

To derive the mean square properties of the feasible estimator, we need ρ̂ to converge in
probability to ρ, which is given in the following proposition.

Propsition 3.2 Under assumption A1 to A4, we have

ρ̂ −→ ρ as T −→∞ with probability 1.

Proof The argument to establish the convergence of ρ̂ follows Altman (1990, Theorem 3).

In order to derive the asymptotic properties of m̂∗(x) , we need the following assumption
on the bandwidth h.

Assumption 5 Th5 −→ C <∞ as n −→∞;

Using the Theorem 3.1 and Proposition 3.2 we can derive the bias and variance for m̂∗(x).

Theorem 3.3 Given assumptions A1 to A5 and suppose x is a interior point on the support
of f(·), we have

√
Th (m̂∗(x)− m̂(x)) −→ 0 as T −→∞, with probability 1.

The proof is given in the appendix.

4 Conclusion

In this paper we propose a modification of the local polynomial smoother to accommodate
the dependence structure in a autoregressive error process. One advantage of the proposed
estimator is its simplicity. It has a closed form expression and analogous to the classical
weighted least square type estimator in parametric regression on autoregressive data. In
the case that the error process is AR(1), the asymptotic analysis shows that the proposed
estimator improves the estimation efficiency over the standard local polynomial smoother
and the improvement can be large depending on the autocorrelation function. Extending the
proposed method to a local polynomial smoothing of order p , or to a regression model with
more generally specified error process, like ARMA(p,q), is conceptually straightforward but
further efforts are needed to establish the asymptotic properties of the proposed estimator.
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A Technical Appendix

A.1 proof of theorem 1

Proof First note that β̂is the solution to the following equation

LT (β̂) =
1

T
G(x)

′
1xP

′
KxP1x(Y −G(x)β̂) = 0

and the proposed estimator satisfies β̂ − β = 1
T

(BT )−1LT (β). In the following we define
1t = 1(Xt − x), Kt = Kh(

Xt−x
h

) and zt = Xt − x. Direct calculation gives the elements in
1
T
BT as follows:

1

T
(BT )1,1 =

1

T
(1− ρ2)K11

2
1 +

1

T

T∑
t=2

Kt(1t − ρ1t−1)2

'
∫

1

h
K(

Xt − x
h

)

{
1(
Xt − x
h

)− ρ1(
Xt−1 − x

h
)

}2

f(Xt)f(Xt−1)dXtdXt−1

=

∫
Kt1tf(Xt)dXt − 2ρ

∫
Kt1t1t−1f(Xt)f(Xt−1)dXtdXt−1+

+ ρ2
∫
Kt1t−1f(Xt)f(Xt−1)dXtdXt−1

= f(x)− 2hρf 2(x) + hρ2f 2(x) +O(h)

1

T
(BT )1,2 = (BT )2,1 =

1

T
(1− ρ2)z1K11

2
1 −

1

T

T∑
t=2

Kt(1t − ρ1t−1)(−ρzt−11t−1 + zt1t)

= o(h)

1

T
(BT )2,2 =

1

T
(1− ρ2)z21K11

2
1 +

1

T

T∑
t=2

(−ρzt−11t−1 + zt1t)
2Kt

=

∫
z2t 1

2
tKtf(Xt)dXt − 2ρ

∫
zt1tKtzt−11t−1f(Xt)f(Xt−1)dXtdXt−1+

+ ρ2
∫
Ktzt−1f(Xt)f(Xt−1)dXtdXt−1

= h2µ(2)f(x) + o(h2)

Hence,

1

T
BT =

[
f(x)− 2hρf 2(x) + hρ2f 2(x), o(h)

o(h), h2µ(2)f(x) + o(h)

]
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Then, we look at EX{(LT (β)} = 1
T
G(x)

′
1xP

TKxP1x(Y −G(x)
′
β). Replacing each m(Xt)

with its second-order Taylor expansion around point x, we have

m(X) = G(x)
′
β + (X − x)2[

1

2
m′′(x)] +O((X − x)3).

Then the term E{(LT (β)|X}can be written as

=
1

T
G(x)

′
1xP

′
KP1x

{
(X − x)2[

1

2
m′′(x)] +O{(X − x)3}

}
' [

1

2
m′′(x)]

1

T

[ ∑T
t=2Kt[−ρ1tZ2

t−11t−1 + ρ2Z2
t011

2
t−1 + Z2

t 1
2
t + ρZ2

t 1t1t−1]∑T
t=2Kt[−ρZ2

t 1tZt−11t−1 + ρ2Z3
t−11

3
t−1 + Z3

t 1
3
t + ρZ2

t 1t1t−1]

]
+O(h3)

' [
1

2
m′′(x)]

[
µ(2)f(x) +O(h)
hρµ(2)f(x) + o(h)

]
+O(h3)

Direct calculation gives that the bias of m̂(x) is2

EX(m̂(x)−m(x)) ' (1, 0)(
1

T
BT )−1EX(LT (β)) =

1

2
h2µ(2)m′′(x) + op(h

2)

Now we look at the variance of m̂(x) conditional on X. First note that

CovX

{
1

T
G(x)

′
1xP

′
KxP1xY

}
= σ2

e

1

T
G(x)

′
1xP

′
KxP1xΣ1xP

′
KxP1xG(x)

1

T

Since P
′
P = Σ−1, so the middle part of the above matrix P1xΣ1xP

′
becomes a identity

matrix. Therefore, we have

CovX(·) = σ2
e

1

T
G(x)

′
1xP

′
KxKxP1xG(x)

1

T
=
σ2
e

T 2
AA

′

Direct calculation shows that the (i, j)th , i, j = 1, 2, element of the matrix CovX(·), denoted
by Ci,j, are as follows:

C1,1 =
σ2
e

T 2
(1− ρ2)K2

11
2
1 +

σ2
e

T 2

T∑
t=2

K2
t (1t − ρ1t−1) '

1

Th
σ2
eγ(0)f(x)

C1,2 = C2,1 =
σ2
e

T 2
(1− ρ2)z1K2

11
2
1 +

σ2
e

T 2

T∑
t=2

K2
t (1t − ρ1t−1) (−ρzt−11t−1 + zt1t)

' σ2
e

Th
[γ(1)f(x) + o(h) +O(h)]

C2,2 =
σ2
e

T 2
(1− ρ2)z21K2

11
2
1 +

σ2
e

T 2

T∑
t=2

(−ρzt−11t−1 + zt1t)
2K2

t

=
σ2
e

Th
[γ(2)f(x) + o(h)]

2The determinant of BT is det(BT ) = (BT )1,1(BT )2,2 − (BT )2,1(BT )1,2.
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So in matrix form, the covariance of the above term is

CovX(·) =
σ2
e

Th
f(x)

[
γ(0), γ(1)
γ(1), γ(2)

]
+ op(

1

Th
)

Now, the variance of β̂0 is

V arX(β̂0) = {1, 0} {BT}−1CovX(
1

T
Gp,h(X − xeT )Ix,hP

′
KPIx,hY ) {BT}−1 {1, 0}

′

=
σ2
e

Th

v(0)

f(x)
+ op(1/Th)

A.2 Proof of Theorem 3.3

Proof First we let W−1 = Ix,hP
′
KPIx,h and Ŵ−1 = Ix,hP̂

′

KP̂Ix,h ; Define G+1 = {(X1−
x)2, · · · , (XT − x)2}′ . From the definition of β̂ and β̂∗, we have that

β̂ − β̂∗ = (G
′
W−1G)−1G

′
W−1Y − (G

′
Ŵ−1G)−1G

′
Ŵ−1Y

= (G
′
W−1G)−1G

′
W−1(G+1β2 + o(h3) + ε)− (G

′
Ŵ−1G)−1G

′
Ŵ−1(G+1β2 + o(h3) + ε)

= β2

[
(G

′
W−1G)−1G

′
W−1 − (G

′
Ŵ−1G)−1G

′
Ŵ−1

]
G+1

+
[
(G

′
W−1G)−1G

′
W−1 − (G

′
Ŵ−1G)−1G

′
Ŵ−1

]
ε+ op(h

3)

= ∆1 + ∆2

From proof of theorem 3.1, we get

EX(β̂ − β̂∗) = ∆1 = h2op(1)

varX(β̂ − β̂∗) = ∆2∆
′

2 =
1

Th
· op(1)

Combine this with assumption 5, we have

EX(
√
Th(β̂ − β̂∗)) = op(1)

varX(
√
Th(β̂ − β̂∗)) = op(1)

Therefore, we have
√
Th(β̂ − β̂∗) = op(1).
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