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1. Introduction

The Boston mechanism (BM) is a widely used school choice mechanism around the world.
Under BM, a student’s ranking of a school strongly influences his chance of being assigned to
that school. Specifically, each school accepts students who rank it as their first choice and it only
accepts students who rank it as their second choice when there are seats left. Loosely speaking,
BM attempts to assign the maximum possible number of students to their first-choice schools and
only when all such assignments have been finished does it consider assigning students to their
second-choice schools. If a student is not admitted to his first-choice school, his second-choice
school may be filled with students who have listed it as their first choice. Abdulkadiroğlu and
Sönmez (2003)’s study, which led to renewed interest in the design and study of school choice
mechanisms, pointed out that BM does not satisfies strategy-proofness and stability, which are
two main desirable properties of a mechanism. To restore strategy-proofness and stability, they
proposed two competing alternatives, namely the student-optimal stable mechanism (SOSM) and
the top trading cycles mechanism (TTCM). Their research inspired a large amount of papers that
further developed these three mechanisms. Kojima and Ünver (2012) show that BM respects
preference rankings. Since respect of preference rankings is a refinement of Pareto efficiency,
BM clearly satisfies Pareto efficiency.

The main purpose and contribution of this paper is to propose a new Pareto efficient school
choice mechanism, called the recursive Boston mechanism (RBM). In order to introduce RBM,
we need the following notions. A school choice problem consists of five components: a set of
students, a set of school types, a capacity vector, the preference profile of students over schools,
and the priority profile of schools over students. A matching is a vector of assignments where each
student can only be assigned to one school seat and one school can only be assigned to the number
of students no more than its capacity. A mechanism is a function from the set of problems to the set
of matchings. Given a problem, a matching, and a subset of students, a reduced problem is defined
by removing the subset of students and their corresponding assignments under the given matching,
while the preference profile remains the same. A subproblem with respect to the given matching
and subset of students is defined by removing the subset of students and their corresponding
assignments under the given matching, while the preference profile of the subproblem are defined
over the set of schools with strictly positive capacity left. That is, the schools’ capacities are
reduced and the students’ preferences are defined over the set of schools with strictly positive
capacity left. While BM considers the reduced problem of the original problem after removing
students and their assignments in the previous step, RBM considers the subproblem.

As was mentioned earlier, BM attempts to assign the maximum possible number of students to
their first-choice schools and only when all such assignments have been finished does it consider
assigning students to their second-choice schools. RBM attempts to assign the maximum possible
number of students to their first-choice schools, and when all such assignments have been finished,
RBM considers assigning the maximum possible number of students to their next choices that
still have strictly positive capacity left. RBM turns out to share similar properties with BM. We
show that the RBM does not satisfy strategy-proofness and stability, but satisfies Pareto efficiency.
Moreover, the set of Nash equilibrium outcomes of the preference revelation game induced by
RBM is equivalent to the set of stable matchings with respect to the true preferences of students.

The remaining of this paper is organized as follows. Second 2 introduces the basic school
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choice model. Section 3 presents the algorithm of the recursive Boston mechanism. Section 4
presents properties of the recursive Boston mechanism. Section 5 concludes the paper.

2. The model

Let I be a set of potential students, and I ⊂ I . Let C be a potential set of schools seats, and
C ⊂ C . For each D ⊆ C, let C(D) be the set of school types and q(D) = [qc(D)]c∈C(D) be the
capacity vector of all school types associated with D, where qc(D) ≥ 1 and qc(D) stands for the
maximal number of students that can be assigned to it. For a student, being unmatched is denoted
as being matched to the null school type ∅ with q∅ = |I|.

Each student i∈ I has a single unit demand with a strict (complete, transitive, and antisymmetric)
preference order Pi over C(C)∪{∅}. Let P denote the set of all such orders. The preference
profile of students, denoted by P= (Pi)i∈I ∈P |I|, is a vector of preference orders. Let PI′ = (Pi)i∈I′

denote the preference profile of any subset I
′ ⊂ I. Let Ri denote the weak part correspondence of

Pi, i.e., for all c,d ∈ C(C)∪{∅}, cRid implies that cPid or c ∼ d. For each c ∈ C(C)∪{∅}, let
Pi(c) be the preference ranking of school c at Pi, i.e., if school c is the lth choice of student i under
Pi, then Pi(c) = l. Therefore, for all c,d ∈C(C)∪{∅}, Pi(c)< Pi(d) if and only if cPid.

Each school c ∈C(C) has a strict (complete, transitive, and antisymmetric) priority order �c
over I, whereas i �c j means that student i has higher priority than student j at school c. A
priority structure �= (�c)c∈C(C) is a vector of priority orders.1 Let Uc(i) = { j ∈ I| j �c i}, i.e.,
Uc(i) stands for the set of students who have higher priority for school c than student i.

A matching is a list µ = (µi)i∈I such that for each i ∈ I, µi ∈C(C)∪{∅} and |µi| = 1, with
each school c being assigned to the number of students no more than its capacity qc(C). For each
c ∈C(C)∪{∅}, let µc = {i ∈ I|µi = c} stand for the set of students assigned to school c under µ .
Given a subset of students I

′ ⊂ I, let µI′ be the set of school seats assigned to the subset I
′
. A school

choice problem is denoted by ε = (I,C(C),q(C),P,�). Denote the set of problems as E and the
set of matchings as M . A mechanism is a function φ : E →M that maps the set of problems to
the set of matchings. Denote by φi(ε) the school that is assigned to i by φ at ε . Similarly, denote
by φc(ε) the set of students that are assigned to c by φ at ε .

Let P−i be the preference profile of students other than i. A mechanism φ is strategy-proof if
for each ε ∈E , i∈ I and P

′
i ∈P , φ(I,C(C),q(C),P,�)Riφ(I,C(C),q(C),P′i ,P−i,�). A mechanism

φ is stable if it is non-wasteful and fair. Non-wastefulness means that for each ε ∈ E , i ∈ I, and
c ∈C(C)∪{∅}, cPiφi(ε) implies that |φc(ε)|= qc(C). Fairness means that for each ε ∈ E , i ∈ I,
and c ∈C(C), cPiφi(ε) implies that for each j ∈ φc(ε), j �c i. A mechanism φ is Pareto efficient
if for each ε ∈ E , there exist no matchings µ ∈M such that µiRiφi(ε) for all i ∈ I, and µ 6= φ(ε).

1Note that a priority order can be considered as a school’s “preference” over individual students. Let PC(C) =
(Pc)c∈C(C) denote the list of school “preferences” over subsets of students. We assume that for each school c, any
subset of students I

′ ⊂ I such that |I ′ |< qc(C), the following two conditions hold: (1) for each i ∈ I\I ′ , [I ′ ∪{i}]PcI
′
;

and (2) for all i, j ∈ I\I ′ , [I ′ ∪ {i}]Pc[I
′ ∪ { j}] if and only if i �c j. This property of priority structures is called

responsiveness (see Roth 1985).
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3. The recursive Boston mechanism

We need more notation to define RBM. For any subset of schools C
′ ⊆ C(C) and Pi ∈P , Pi|C′

is a projection of Pi at C
′

if Pi|C′ is defined as a strict order over C
′ ∪ {∅}, and for all c,d ∈

C
′ ∪{∅}, school c has higher preference ranking than school d at Pi|C′ if and only if school c has

higher preference ranking than school d at Pi, i.e., Pi|C′ (c) < Pi|C′ (d)⇔ Pi(c) < Pi(d). For each
I
′ ⊆ I, we say that PI′ |C′ is a projection of PI′ at C

′
if Pi|C′ is a projection of Pi at C

′
for all i ∈ I

′
.

Given a problem ε = (I,C(C),q(C),P,�), a matching µ , and a subset of students I\I ′ , a reduced
problem with respect to µ and I

′
is defined by removing I\I ′ and their corresponding assignments,

while the preference profile remains the same. Formally, a reduced problem of ε with respect
to µ and I

′
, denoted by εr(I

′
,µ), is a list εr(I

′
,µ) = (I

′
,C(C\µI\I′ ),q(C\µI\I′ ),PI′ ,�). Given

a problem ε = (I,C(C),q(C),P,�), a matching µ , and a subset of students I\I ′ , a subproblem
of ε with respect to µ and I

′
, is defined by removing I\I ′ and their corresponding assignments,

while the preference profile of the subproblem is defined over the remaining school types that still
have strictly positive capacity left. That is, the schools’ capacities are reduced and the students’
preferences for the subproblem are defined over the set of schools with strictly positive capacity
left. Formally, a subproblem of ε with respect to µ and I

′
, denoted by εs(I

′
,µ), is a list εs(I

′
,µ) =

(I
′
,C(C\µI\I′ ),q(C\µI\I′ ),PI′ |C(C\µ

I\I′ )
,�).

Given a problem ε ∈E , the recursive Boston mechanism, denoted by γ , determines a matching
γ(ε) through the following algorithm:

Step 1: Only the first choices of the students are considered. For each school, consider the students
who listed it as their first choice and assign seats of the school to these students one at a time
following their priority order until there is no seat left or there is no student left who has listed it
as his first choice. Remove students who are assigned a seat in this step and their assigned seats.

...
Step k: Consider the subproblem induced by the removing of students who get a seat in the
previous steps and their assignments. Only the first choices of the remaining students in the
subproblem are considered. For each school, consider the students who listed it as their first
choice and assign seats of the school to these students one at a time following their priority order
until there is no seat left or there is no student left who has listed it as his first choice. Remove
students who are assigned a seat in this step and their assigned seats.

The algorithm terminates when all students have been assigned to a seat. In step k, if we replace
“subproblem” by “reduced problem”, then we get the Boston mechanism. Denote the Boston
mechanism by β .

EXAMPLE 1 The problem ε is defined as follows. Let I = {i1, i2, i3, i4}, C = {c1,c2,c3},
and the capacity of each school is one. The preferences of students and the priority orders of
schools are listed below:
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Pi1 Pi2 Pi3 Pi4 �c1 �c2 �c3

c1 c1 c3 c3 i1 i2 i1
c2 c3 c2 c1 i2 i3 i2
c3 c2 c1 c2 i3 i1 i4
∅ ∅ ∅ ∅ i4 i4 i3

The algorithm of the recursive Boston mechanism, denoted by γ , results in the following matching:

γ(ε) =

(
i1 i2 i3 i4
c1 c2 ∅ c3

)
The algorithm of the Boston mechanism, denoted by β , results in the following matching:

β (ε) =

(
i1 i2 i3 i4
c1 ∅ c2 c3

)
Note that BM and RBM both assign c1 to i1 and c3 to i4 in the first step. The difference occurs

in step 2. In step 2, BM considers the second choices of i2 and i3, and assigns c2 to i3 because i2
puts c2 in a lower preference ranking than i3 does. On the contrary, RBM considers the subproblem
by removing c1, c3, i1 and i4. In the updated preference profile, i2 and i3 both list c2 as their first
choice. Because i2 has higher priority than i3 for c2, c2 is assigned to i2 under RBM.

4. Properties of the recursive Boston mechanism

Proposition 1. γ is not stable.

Proof. We see from example 1 that γ(ε) is not stable because c3Pi2c2, i4 ∈ γc3(ε), but i2�c3 i4.

Proposition 2. γ is not strategy-proof.

Proof. In example 1, if student i2 reports the preference P
′
i2 : c3P

′
i2∅, then he will be assigned to

school c3 and be better off. Thus, γ is not strategy-proof.

Proposition 3. γ is Pareto efficient.

Proof. Consider the procedure of RBM. Any student who leaves at Step 1 is assigned his top
choice and cannot be made better off. Any student who leaves at Step k is assigned his top choice
among those schools remaining at Step k (k ≥ 2). Since preferences are strict, he cannot be made
better off without hurting someone who left at Step 1 to k−1. By the same logic, no student can
be made better off without hurting someone who left at the earlier steps. Therefore, γ is Pareto
efficient.

Note that since γ is not strategy-proof, it is Pareto efficient with respect to the reported preference
profile. Ergin and Sönmez (2006) prove that for BM, the set of Nash equilibrium outcomes of the
preference revelation game induced by BM is equal to the set of stable matchings under the true
preferences of students. One can easily imagine that RBM also satisfies this property and proofs
for the next proposition are almost the same with proofs for theorem 1 in Ergin and Sönmez (2006).
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Proposition 4. Let P̂ be the list of true student preferences and consider the preference revelation
game induced by RBM. The set of Nash equilibrium outcomes of this game is equal to the set of
stable matchings under the true preferences P̂.

Proof. Let P be an arbitrary strategy profile and let µ be the resulting outcome of RBM. Suppose
that µ is not stable under the true preferences P̂. Then, we conclude that either there exist i ∈ I and
c∈C(C)∪{∅}with cP̂iµi such that |µc|< qc(C), or there exist i, j ∈ I and c∈C(C) with cP̂iµi and
j ∈ µc such that i�c j. By the procedure of γ , Pi(c) 6= 1 for otherwise he would be assigned to a seat
at c. Let P

′
i be any strategy where P

′
i (c) = 1. It is easy to see that γi(I,C(C),q(C),P′i ,P−i,�) = c.

Therefore, P is not a Nash equilibrium strategy profile and µ is not a Nash equilibrium outcome.
Hence, any Nash equilibrium outcome should be stable under the true preferences P̂.

Conversely, let µ be an arbitrary stable matching under the true preferences P̂. Consider a
preference profile P where for each i ∈ I, Pi(µi) = 1. We then prove that P is a Nash equilibrium
strategy profile. Consider a c ∈C(C) such that c 6= µi and cPiµi. Since µ is stable and Pi(µi) = 1,
we have that |µc| = qc(C), and for each j ∈ µc, Pj(c) = 1 and j �c i. Therefore, given P−i, there
is no way student i is assigned a seat in school c even if he ranks c first. Moreover, it is easy to
see that γ(I,C(C),q(C),P,�) = µ . Therefore, P is a Nash equilibrium strategy profile and µ is the
corresponding Nash equilibrium outcome. Since µ is an arbitrarily chosen stable matching under
the true preferences P̂, any stable matching under the true preferences P̂ is a Nash equilibrium
outcome.

5. Discussion and concluding remarks

The seminal paper of Abdulkadiroğlu and Sönmez (2003) introduced three well-known school
choice mechanisms, i.e., the SOSM, TTCM and BM. The current paper proposes the recursive
Boston mechanism (RBM) which is similar to BM. We prove that RBM shares many similar
properties with BM. RBM is neither stable nor strategy-proof, but is Pareto efficient. Moreover,
The set of Nash equilibrium outcomes of the preference revelation game induced by RBM coincides
with the set of stable matchings under the true preferences. Future work is needed to further
investigate the theoretical and empirical performances of RBM, especially the difference between
RBM and the other school choice mechanisms.

When each school has its own strict priority over students, BM was criticized for its lack of
strategy-proofness and stability and has been replaced by SOSM in many places. Miralles (2008)
proposes a variation of BM when schools do not have strict priorities. He proves that when every
school shares the same priority, BM outperforms SOSM according to several ex ante efficiency
criteria. The current paper restricts the priorities to be strict. Future work is needed to extend RBM
to the environment when schools have no strict priorities.
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