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1. Introduction

Since the seminal work of Morris and Shin (2002) on beauty contest games, social value
of information in Bayesian games has been experiencing a renewed interest. Angeletos
and Pavan (2007) propose a class of Bayesian games which are tractable yet flexible
enough to capture a number of applications to study social value of information. In
Bayesian games studied by Morris and Shin (2002) and Angeletos and Pavan (2007),
there are a continuum of players, payoff functions are symmetric and quadratic, and
players’ information consists of normally distributed signals. Angeletos and Pavan (2007,
2009) establish the existence and uniqueness of equilibrium.

For the case with a finite number of players, Radner (1962) was the first to study
Bayesian games with quadratic payoff functions and normally distributed signals. He
assumes that players have identical payoff functions and calls such a game a team (before
Harsanyi’s Bayesian games). Theorem 5 of Radner (1962) establishes the existence and
uniqueness of equilibrium. This result can be directly used in the study of Bayesian
games of which best response correspondences are the same as those of teams. Basar and
Ho (1974) use Radner’s theorem to study Bayesian oligopoly games with linear demand
functions, followed by many papers on information sharing in oligopoly (see Raith (1996)
and references therein). Ui (2009) studies a class of Bayesian games possessing the same
best response correspondences as those of teams, which include Bayesian potential games
(Monderer and Shapley, 1996; Heumen et al., 1996) as a special case. Calvó-Armengol
and De Mart́ı Beltran (2009) study information gathering in organizations using Bayesian
potential games in which players are located on networks through which players can share
information.

In both the continuum and finite cases, the unique equilibrium strategy is a linear
function of signals. Thus, the difference between them seems not to change the math-
ematics very much. However, as far as the existence and uniqueness of equilibrium is
concerned, the above two strands of literature are completely separated. The purpose of
this note is to connect them in terms of Radner’s theorem on teams with a finite number
of players. Ui (2009) points out that Radner’s theorem is useful in the study of Bayesian
potential games with a finite number of players. In contrast, this paper demonstrates
that Radner’s theorem is useful even with a continuum of players.1

We show that Radner’s theorem implies the existence and uniqueness of equilibrium
in a game with a continuum of players established by Angeletos and Pavan (2007, 2009).
The intuition is as follows. In the game studied by Angeletos and Pavan (2007, 2009),
payoff functions are symmetric, and attention is restricted to a symmetric equilibrium.
This implies that the first order condition is reduced to a single equation, and there exists
an n-player team with the same first order condition, where n is arbitrary. Therefore, the
existence and uniqueness of a solution to the first order condition is assured by Radner’s
theorem.

1In fact, games with a continuum of players studied by Angeletos and Pavan (2007, 2009) are bilateral
symmetric interaction games (Ui, 2000) with a continuum of players, a special class of potential games
in the sense proposed by Ui (2008).

73



Economics Bulletin, 2013, Vol. 33 No. 1 pp. 72-77

2. Model

There is a continuum of players and an individual player is indexed by i ∈ [0, 1]. Player
i chooses an action ai ∈ R. Given an action profile a = (ai)i∈[0,1], the average action is

denoted by A =
∫ 1

0
aidi. Player i’s payoff is

ui(ai, a, ω) = −αa2i + 2βaiA+ 2γaiθi + fi(a, ω), (1)

where ω ≡ (θj)j∈[0,1] is a payoff state with θi ∈ R for each i, α, β, γ ∈ R are constants
with α > 0, and fi is a function with fi(a, ω) = fi(a

′, ω) if aj = a′j for almost all j ∈ [0, 1].
Player i observes a vector-valued signal xi ∈ Rs where s ≥ 1 is an integer. For i 6= j,

(xi, xj, θi, θj) ∈ R2s+2 is normally distributed with E[xi] = E[xj] = x̄, E[θi] = E[θj] = θ̄,
var[xi] = var[xj] = C, cov[xi, xj] = cov[xj, xi] = D, cov[xi, θi] = cov[xj, θj] = G, and
var(θi) = var(θj) = H.

A strategy is a measurable function a : Rs → R which assigns an action a(xi) ∈
R to a signal xi ∈ Rs. Since fi(a, ω) in the payoff function does not depend upon
player i’s action, his best response is determined by the terms other than fi(a, ω), i.e.,
−αa2i + 2βaiA + 2γaiθi. Hence, a Bayesian Nash equilibrium is defined as a strategy
a : Rs → R such that

a(xi) = arg max
ai

(
−αa2i + 2βaiA(xi) + 2γaiE[θi|xi]

)
for all xi ∈ Rs, where

A(xi) ≡ E
[ ∫ 1

0

E[a(xj)|ω]dj
∣∣∣xi] = E[E[a(xj)|ω]|xi] = E[a(xj)|xi]

for j 6= i.2 The first order condition is

αa(xi)− βE[a(xj)|xi] = γE[θi|xi]. (2)

Angeletos and Pavan (2007, 2009) show the following result.3

Theorem 1. If α > 0 and β/α < 1, then there exists a unique equilibrium given by

a(xi) = γG>(αC − βD)−1(xi − x̄) + γθ̄/(α− β) (3)

for all xi ∈ Rs.

3. Radner’s theorem

Radner (1962) considers a Bayesian game with a finite number of players who have an
identical payoff function. We call this game a team following Radner (1962). There are n
players and an individual player is indexed by i ∈ {1, . . . , n}. Player i chooses an action

2Since E[a(xj)|ω] = E[a(xk)|ω] for all j 6= k by the symmetric information structure, it holds that∫ 1

0
E[a(xj)|ω]dj = E[a(xj)|ω].
3Angeletos and Pavan (2007) consider the case with −1 < β/α < 1 and s = 2. Angeletos and Pavan

(2009) consider the case with β/α < 1 and s ≥ 2.
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ai ∈ R. An action profile is denoted by a = (ai)i∈{1,...,n} ∈ Rn, which is understood as a
column vector. Each player has the same payoff function

v(a, ω) = −a>Ma + 2
n∑
i=1

γiaiθi, (4)

where M = [mij]n×n is a symmetric matrix and ω ≡ (θ1, . . . , θn) ∈ Rn is a payoff state.
Player i observes a vector-valued signal xi ∈ Rs, and (x1, . . . , xn, θ1, . . . , θn) is normally
distributed. We denote player i’s strategy by σi : Rs → R. A strategy profile (σi)i∈{1,...,n}
is a Bayesian Nash equilibrium if

σi(xi) = arg max
ai

E[v((ai, σ−i), ω)|xi]

for all xi ∈ Rs and i ∈ {1, . . . , n}, where σ−i = (σj(xj))j 6=i.
If v(a, ω) is strictly concave in a and ω is commonly known, then the first order

condition for an equilibrium coincides with that for maximizing v(a, ω) with respect to
a, and an equilibrium is unique. This holds even under incomplete information as shown
by Theorem 5 of Radner (1962).

Theorem 2 (Radner, 1962). If M is positive definite, then there exists a unique equilib-
rium (σi)i∈{1,...,n}. It is a unique solution of the first order condition

n∑
j=1

mijE[σj(xj)|xi] = γiE[θi|xi]

for all xi ∈ Rs and i ∈ {1, . . . , n}, and σi is linear.

We show that Theorem 1 is implied by Theorem 2. Consider a team with the same
parameters as those in a Bayesian game in Section 2. Let mii = α, mij = −β/(n − 1),
and γi = γ for all i 6= j, and assume that M is positive definite. This is true if and
only if α > 0 and −(n − 1) < β/α < 1 because the leading principal minors of M are
(α+β/(n−1))k−1(α−(k−1)β/(n−1)) for k = 1, . . . , n. The information structure is also
the same as that in Section 2: for i 6= j, (xi, xj, θi, θj) ∈ R2s+2 is normally distributed with
E[xi] = E[xj] = x̄, E[θi] = E[θj] = θ̄, var[xi] = var[xj] = C, cov[xi, xj] = cov[xj, xi] = D,
cov[xi, θi] = cov[xj, θj] = G, and var(θi) = var(θj) = H.

The first order condition is

ασi(xi)−
β

n− 1

∑
j 6=i

E[σj(xj)|xi] = γE[θi|xi]

for all i. By Theorem 2, this equation has a unique solution (σi)i∈{1,...,n}. Since the joint
probability distribution of (x1, . . . , xn) is symmetric and that of (xi, θi) is the same for
all i, for any permutation π : {1, . . . , n} → {1, . . . , n}, we have

ασi(xπ(i))−
β

n− 1

∑
j 6=i

E[σj(xπ(j))|xπ(i)] = γE[θπ(i)|xπ(i)]

for all i. This implies that a strategy profile (σ′i)i∈{1,...,n} with σ′π(i) = σi for all i is also a
unique solution. Hence, we must have σi = σj for all i, j, and let a ≡ σi. Then, the first
order condition is reduced to

αa(xi)−
β

n− 1

∑
j 6=i

E[a(xj)|xi] = αa(xi)− βE[a(xj)|xi] = γE[θi|xi] (5)
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since E[a(xj)|xi] = E[a(xk)|xi] for all j, k 6= i. Theorem 2 implies that (5) has a unique
solution if α > 0 and −(n− 1) < β/α < 1.

Note that (5) coincides with the first order condition (2). Thus, a Bayesian game in
Section 2 has a unique equilibrium if α > 0 and −(n − 1) < β/α < 1 by Theorem 2.
Since we can choose arbitrary n, it has a unique equilibrium if α > 0 and β/α < 1.

Finally, we solve (5) for completeness. By Theorem 2, the solution must be a linear
function, and let a(xi) = b>(xi − x̄) + c where b ∈ Rs and c ∈ R. Plugging this into (5),

α(b>(xi − x̄) + c)− β(b>(E[xj|xi]− x̄) + c) = γE[θi|xi]. (6)

By the property of multivariate normal distributions,4

E[xj|xi] = x̄+DC−1(xi − x̄), E[θi|xi] = θ̄ +G>C−1(xi − x̄).

Plugging this into (6),

b>(αI − βDC−1)(xi − x̄) + (α− β)c = γG>C−1(xi − x̄) + γθ̄

for all xi ∈ Rs. This implies that b> = γG>(αC − βD)−1 and c = γθ̄/(α− β).
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