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1. Introduction

Suppose an industry with differentiated products where it is unprofitable for all firms to stay
in the market. In this context, we examine two questions: Does the exit decision favour
maximal or minimal product differentiation? What is the role played by sunk reentry costs?

We use an infinite horizon supergame with discounting played by three firms. Firms
play a two-stage game at each period of the supergame. At the first stage, they decide
simultaneously to stay in or out of the market because it is not profitable for all firms to
remain in the market. A firm that decided to exit in some period must incur a reentry cost
to become active in a subsequent period. At the second stage, firms that decided to stay in
choose simultaneously their output. Those firms produce differentiated products.

Ghemawat and Nalebuff (1985) and Fudenberg and Tirole (1986) also examine firms’
exit decision. They all use a war of attrition model between duopolists, suppose that reentry
is unprofitable if it occurs, and do not consider the role of product differentiation. These
authors show that the less efficient firm is the first one to exit.

Chang (1991) and Ross (1992) analyze how a cartel’s sustainability is influenced by
product differentiation. With an address model of differentiation, they find that an increase
in differentiation facilitates cartel stability. With a model employing a quadratic utility
function for a representative consumer (e.g., Singh and Vives, 1984), Ross (1992) adds that
cartel stability increases when firms produce either very substitutable or very differentiated
products. Chang (1991) and Ross (1992) do not consider, however, exit decisions and reentry
costs. By incorporating those elements, we develop insights as to whether exit favours
maximal or minimal product differentiation.

In particular, we treat the decision to stay in the market as a coalition formation problem
and adopt Garella and Richelle (1999)’s approach. As such, we consider an endogenous
determination of the equilibrium market structure. Rather than considering a particular
market structure and determining its stability, we look at all feasible market structures and
determine which one is the most stable.

By assuming that firms have the same cost function, production capacity, and discount
factor (which is assumed to be sufficiently close to one), we find that exit favours maximal
differentiation when reentry is costless. When reentry is unprofitable, exit favours maximal
(minimal) differentiation if production capacity is small (large) relative to the market size.

The rest of the paper is organized as follows. Section 2 presents the model. The case of
costless reentry is analyzed in Section 3. Section 4 studies the case of unprofitable reentry.
Section 5 provides concluding remarks. Proofs can be found in the Appendix.

2. Model

We consider an infinite horizon supergame played by three firms. The supergame is denoted
by Γδ with δ ∈ (0, 1) being the discount factor common to all firms. Firms play a two-stage
game at each period of the supergame. At the first stage, firms decide simultaneously to stay
in or to stay out of the market. At the second stage, firms that decided to stay in choose
simultaneously the quantity they produce. Firms that decided to stay out produce nothing.
Actions taken during a stage become known at the end of that stage.
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To focus on product selection, we assume that active firms (i.e., those that decided to
stay in the market) have the same cost function C(q). For simplicity, we assume that there
are no variable costs. Active firms incur a fixed cost of production f implying C(q) = f for
q ∈ [0, q̄] with q̄ representing firms’ production capacity. Inactive firms have a production
cost equal to zero. An inactive firm in some period must pay a sunk reentry cost R to
become active in some subsequent period. We examine two cases. First, the reentry cost
equals zero. Second, the reentry cost is so large that, once a firm decided to stay out of the
market in some period, it never finds it profitable to stay in the market in some subsequent
period.

The demand side of the market is described by a representative consumer’s preferences
over the set of available products S. These preferences are represented by the utility function

U(q1, q2, q3) = α
∑
i∈S

qi −
1

2

∑
i∈S

∑
j∈S\i

βijqiqj −
1

2

∑
i∈S

q2
i +m

where qi stands for the quantity purchased of product i; α > 0 gives the absolute size of the
market; m denotes income; and, βij ∈ (0, 1] is an indicator of the degree of substitutability
between products i and j (with βij = βji). The degree of substitutability between products
i and j is increasing with βij. If βij → 0, then products i and j tend to be independent.
Products i and j are perfect substitutes if βij = 1. We suppose β12 < β13 < β23.

Because each firm produces one good, the set of available products S corresponds to the
set of active firms. From the consumer’s maximization problem, the linear inverse demand
function faced by firm i ∈ S is

pi = α− qi −
∑

j∈S\{i}

βijqj

in the region of quantities where prices are positive. For given quantities, the price that the
representative consumer is willing to pay for products i and j decreases with βij. Hence, the
representative consumer has intrinsic preferences for product differentiation.

The profit (gross of the reentry cost) of active firm i in a given period is πi(qi, (qj)j∈S\{i}) =
piqi−f . Firm i’s minimal profit at the second stage of the constituent game of Γδ is denoted
by vi(S) with i ∈ S. In this second stage, firms in S play a Cournot game with differentiated
products and vi(S) corresponds to firm i’s minimax in this game. Since we assume that firms’
capacity is smaller than the market size but strictly greater than the minimax quantity,1 firm
i’s minimax in a two-firm cartel S = {i, j} is

vi(i, j) =

(
α− βij q̄

2

)2

− f

and is decreasing in both βij and q̄.
Firm i’s payoff in the supergame Γδ corresponds to the discounted average sum of its

per period profits. If firm i’s strategy profile leads to a sequence of profit (wit)
∞
t=0 in the

two-stage game, then firm i’s payoff in Γδ resulting from the play of this strategy profile

1Appendix A presents parameters’ restrictions induced by assumptions specified in this section.
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is Pi = (1 − δ)
∑∞

t=0 δ
twit. We denote by Vδ the set of subgame perfect equilibrium payoff

vectors of the supergame Γδ. Vδ can be quite large since we assume that δ is sufficiently
close to 1. It is therefore convenient to work with some subsets of Vδ. Let Vδ(S), with
S ⊆ N and N = {1, 2, 3}, be the set of payoff vectors corresponding to subgame perfect
equilibria of Γδ where, along the equilibrium path, firms in S stay in the market and firms
in N \ S stay out of the market at each period. Vδ(S) = ∅ when there does not exist an
equilibrium where only firms in S remain in the market along the equilibrium path. We say
that cartel S is feasible when Vδ(S) 6= ∅ and let Vδ(S) be its set of attainable payoff vectors.
A necessary and sufficient condition for cartel S to be feasible is that vi(S ∪ {i}) < 0 when
δ is sufficiently close to 1.2 For example, suppose v3(N) < 0. It is then possible to construct
subgame perfect equilibria of Γδ where, along the equilibrium path, firm 3 stays out of the
market at each period and cartel {1, 2} is feasible.

We now introduce some assumptions on the set of feasible cartels. We exclude the
possibility of monopolization by assuming vi(S) > 0 for any i ∈ S such that S ⊂ N and
|S| = 2. At least two two-firm cartels must be feasible to investigate whether exit favours
maximal or minimal differentiation. To keep the analysis as simple as possible, we restrict our
attention to the case where only two two-firms cartels are feasible. Following the assumption
that β12 < β13 < β23, we impose v1(N) > 0, v2(N) < 0, and v3(N) < 0. Accordingly,
{1, 2} and {1, 3} are the only feasible two-firm cartels. Exit favours maximal (minimal)
differentiation if firms 1 and 2 (3) remain in the market while firm 3 (2) stays out since
β12 < β13. To find out whether exit favours maximal or minimal differentiation, we must
determine which feasible cartel is the more likely to form and to remain in the market. This
cannot be done within Γδ and we are confronted with a coalition or cartel formation problem.

There are many ways to deal with such a cartel formation problem.3 Here, we follow
Garella and Richelle (1999)’s approach. A game in coalitional form (N, V ) is associated to
Γδ. V is the characteristic function with V (S) = Vδ(S) for any S 6= N and V (N) = Vδ. This
means that cartel S is feasible (not feasible) if its members can (cannot) attain on their own
any payoff resulting from the play of a subgame perfect equilibrium of Γδ such that members
of S remain in the market along the path generated by such an equilibrium, i.e., V (S) 6= ∅
(V (S) = ∅). The core of (N, V ) is then defined by

C(N, V ) = {P ∈ V (N) = Vα| 6 ∃S ′ and P ′ ∈ V (S ′) = Vα(S ′) such that P ′i > Pi ∀i ∈ S ′} .

Cartel S is said to be stable if and only if C(N, V ) ∩ Vδ(S) 6= ∅. Accordingly, a feasible
cartel is stable when there exists at least one payoff vector, P , in the set of attainable payoff
vectors for this cartel, Vδ(S), such that there does not exist a feasible cartel S ′ and an
attainable payoff vector for this cartel, P ′ ∈ Vδ(S ′), which gives to all members of S ′ strictly
more than they obtain with P , i.e., P ′i > Pi for all i ∈ S ′. Loosely speaking, all members
of a stable cartel can obtain, by staying together in the market, a payoff at least as large as
any other payoff they can obtain if members of another feasible cartel stay in the market.
Therefore, it is reasonable to assume that stable cartels are the more likely to form.

In the next two sections, we identify which cartel is stable when reentry is costless and
unprofitable, respectively.

2See Garella and Richelle (1998) for a proof of this result.
3See Bloch (1995,1996) and Yi (1997), for examples. The former uses a coalition unanimity game, while

the latter looks at an open membership game. Greenberg (1994) provides a survey.
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3. Products Selection with Costless Reentry

In this section, we show that exit favours maximal differentiation when reentry is costless.

Proposition 1. There exists δ̄ < 1 such that, for all δ ∈ (δ̄, 1), {1, 2} is the unique stable
cartel when reentry is costless.

We proceed in two steps to prove Proposition 1. First, we define the pure differentiation
effect and show that it works towards maximal differentiation. Second, we establish that it
is the only effect at work.

Firm 1’s maximal profit when it remains in the market with firm j and firm j obtains a
profit greater than or equal to π̄ is

Π1(β1j, π̄) = max
q1∈[0,q̄], qj∈[0,q̄]

{π1(q1, qj) s.t. πj(qj, q1) ≥ π̄} . (1)

The pure differentiation effect is defined as the difference between Π1(β12, π̄) and Π1(β13, π̄).
From (1) and using the envelope theorem, we have

dΠ1(β1j, π̄)

dβ1j

= −(1 + λ)q1qj

where λ is the multiplier associated to the constraint πj(qj, q1) ≥ π̄ and all terms are evalu-
ated at a solution of the maximization problem in (1). At such a solution, λ, q1, and qj are
strictly positive and Π1(β1j, π̄) is a monotone decreasing function of β1j.

Consequently, the pure differentiation effect is strictly positive. If firms 2 and 3 obtain
the same profit when they remain in the market, then firm 1 can achieve a higher profit by
staying in the market with the firm producing the product that is the less substitutable to
its own. The reason is that the representative consumer has intrinsic preferences for product
differentiation. As shown in the previous section, the price that the representative consumer
is ready to pay for products i and j increases, for given quantities, when β1j decreases.

To show that this is the only effect at work, we define vδj(1, j) as firm j’s minimal payoff
at a subgame perfect equilibrium of Γδ where only firms 1 and j stay in the market along
the equilibrium path. Let σ denote the equilibrium of Γδ leading to the payoff vδj(1, j) for
firm j. This equilibrium is achieved when vδj(1, j) is greater than or equal to the payoff that
firm j obtains if it deviates from its strategy specified in σ in period 0 and plays according to
σ in subsequent periods. Since reentry is costless, any deviation by firm j can be punished
by the play of a subgame perfect equilibrium where only firms 1 and k, with k 6= j, stay
in the market along the equilibrium path. Consequently, firm j obtains a payoff equal to
(1 − δ)d + δ0 = (1 − δ)d by deviating in period 0 with d representing the (instantaneous)
deviation profit. This payoff tends to 0 as δ tends to 1. We then have vδj(1, j)→ 0 if δ → 1
and the maximal payoff that firm 1 can obtain in Vδ(1, j) tends to Π1(β1j, 0) with j = 2, 3
when reentry is costless.

As a result, there exists δ̄ < 1 such that, for all δ ∈ (δ̄, 1), firm 1’s maximal payoff
in Vδ(1, 2), vMδ1 (1, 2), is strictly greater than its maximal payoff in Vδ(1, 3), vMδ1 (1, 3), when
Π1(β12, 0) is greater than Π1(β13, 0). Therefore, only the pure differentiation effect determines
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the difference between vMδ1 (1, 2) and vMδ1 (1, 3) for δ sufficiently close to 1. Since this effect is
positive, we have vMδ1 (1, 2) > vMδ1 (1, 3).

We can now verify that {1, 2} is the only stable cartel for all δ ∈ (δ̄, 1). We know that i)
vMδ1 (1, 2) > vMδ1 (1, 3) for all δ ∈ (δ̄, 1) and ii) P2 = 0 at any payoff vector belonging to Vδ(1, 3).
Thus, for any payoff vector P ∈ Vδ(1, 3), there exists a payoff vector P ′ ∈ Vδ(1, 2) such that
P ′1 > P1 and P ′2 > P2. Accordingly, C(N, V ) ∩ Vδ(1, 3) = ∅ and {1, 3} cannot be stable. The
payoff vector (vMδ1 (1, 2), vδ2(1, 2), 0) belongs to the core of (N, V ) since i) it is impossible to
find another payoff in Vδ where firm 1 earns a strictly greater payoff than vMδ1 (1, 2) and ii)
firm 1 belongs to any cartel S for which Vδ(S) 6= ∅. Hence, cartel {1, 2} is stable.

4. Products Selection with Unprofitable Reentry

With unprofitable reentry, firm 1 cannot use firm k to punish a deviation by firm j, k 6= j.
Indeed, the subgame that follows the decisions to stay in by firms 1 and j and to stay
out by firm k is a two-player game (it is a three-player game when reentry is costless).
This means that the set of equilibrium payoff vectors that firms 1 and j can obtain in this
subgame coincides with the set of equilibrium payoff vectors in an infinitely repeated two-
player Cournot game with differentiated products. Using the Folk theorem,4 firm j’s minimal
payoff in this subgame tends to its minimax payoff in the Cournot game with differentiated
products, vj(1, j), when δ tends to 1. When reentry is unprofitable, we then have that
vδj(1, j)→ vj(1, j) and vMδ1 (1, j)→ Π1(β1j, vj(1, j)) if δ → 1, with j = 2, 3.

If δ is sufficiently close to 1, the sign of vMδ1 (1, 2) − vMδ1 (1, 3) is given by the sign of
Π1(β12, v2(1, 2))− Π1(β13, v3(1, 3)), which can be rewritten as

Π1(β12, v2(1, 2))− Π1(β13, v3(1, 3)) = [Π1(β12, v2(1, 2))− Π1(β13, v2(1, 2))]

+ [Π1(β13, v2(1, 2))− Π1(β13, v3(1, 3))] . (2)

The first term in brackets is the pure differentiation effect, which works towards maximal
differentiation. With unprofitable reentry, a second effect needs to be taken into account in
determining the sign of vMδ1 (1, 2)− vMδ1 (1, 3) and which cartel is stable. This second effect is
given by the second term in brackets in equation (2). It is present because firm j’s minimal
payoff when it remains in the market with firm 1 depends on the degree of substitutability
between firms 1 and j’s products. This effect is referred to as the minimax effect and works
towards minimal differentiation. Indeed, Π1(β1j, vj(1, j)), which we rewrite as Π1(β1j, q̄) for
presentation purposes, is decreasing with the payoff obtained by firm j. Simultaneously, firm
j’s minimax, vj(1, j), increases as β1j decreases. And since the minimax effect increases with
firms’ capacity, q̄ influences which effect dominates.5

Proposition 2. When reentry is unprofitable, there exists δ̄ < 1 such that, for all δ ∈ (δ̄, 1)

1. {1, 3} is the only two-firm cartel which is stable if q̄ > α[3 −
√

5]/2, β13 > β̂(q̄) and
β12 > β̄(β13, q̄);

4See Wen (1994).
5Appendix B provides proofs for the results stated in this section. β̂(q̄) in Proposition 2 corresponds to

the values of β such that the curves depicted in Figure 1 reach their minimum.
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2. Both {1, 2} and {1, 3} are stable if q̄ > α[3−
√

5]/2, β13 > β̂(q̄) and β12 = β̄(β13, q̄);

3. {1, 2} is the only two-firm stable cartel otherwise.

The pure differentiation effect dominates the minimax effect and exit favours maximal
differentiation if q̄ is relatively small. This continues to hold for larger values of q̄ when β12

is sufficiently small, i.e., when products 1 and 2 are sufficiently differentiated. For instance,
firm 1’s maximal profit, Π1(β1j, q̄), coincides with the monopoly profit if β1j equals 0. This
monopoly profit is the largest profit that firm 1 can earn when it remains in the market with
another firm so that Π1(β1j, q̄) must be decreasing for β1j sufficiently close to 0.

When q̄ is relatively large and firms’ products are sufficiently substitutable, the minimax
effect dominates the pure differentiation effect. In this situation, exit favours minimal dif-
ferentiation. Notice that α/2 is the quantity produced by a monopolist. If firms’ capacity
exceeds α/2 then q̄ > α[3−

√
5]/2 and the constraint on q̄ for the pure differentiation effect

to be dominated by the minimax effect is not too stringent.
Finally, it must be noted that both β̂(q̄) and β̄(β13, q̄) stated in Proposition 2 are mono-

tone decreasing with respect to q̄. This result helps in providing the intuition as to why exit
favours minimal differentiation when q̄ is large for given values of β12 and β13. Starting from
a situation where the pure differentiation effect dominates the minimax effect for a given
capacity, say q̄0, we obtain that the opposite holds when q̄ increases, to say q̄1, if β12 is not
too small. This is shown in Figure 1. Accordingly, exit favours minimal differentiation when
firms’ production capacity is relatively large as compared to the market size.

5. Conclusion

The purpose of this paper is to determine whether exit favours minimal or maximal differen-
tiation. The analysis reveals that the answer to this question rests on two opposite effects.
The first one, called the pure differentiation effect, works towards maximal differentiation.
The size of second effect, called the minimax effect, depends on the degree of substitutabil-
ity between products as well as on firms’ production capacity. For a given capacity level,
the minimax effect decreases with the degree of product substitutability and works towards
minimal differentiation. Furthermore, it increases with firms’ capacity.

Maximal (minimal) differentiation occurs when the pure differentiation effect dominates
(is dominated by) the minimax effect. When reentry is costless, only the pure differentiation
effect is at work and exit favours maximal differentiation. When reentry is unprofitable,
however, both effects are at work. In this case, exit favours minimal differentiation when
firms’ production capacity is sufficiently large as compared to the market size.

Therefore, industry’s characteristics (degree of product substitutability, capacity of pro-
duction, and size of reentry costs) are key in determining which firms are more likely to
remain in a market characterized by firms’ exit.
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Appendix A

We show the requirements that the parameters q̄, βij, and f must satisfy for the assumptions
made in section 2 to hold. Consider first the assumption that firms’ capacity is smaller than
the market size but strictly greater than firm i’s minimax quantity. We can verify that

arg max
qi

πi(qi, q̄) =
α− βij q̄

2
.

Accordingly, we must have [α− βij q̄]/2 < q̄ which can be written as

βij >
α− 2q̄

q̄
. (3)

We must impose (α− 2q̄)/q̄ < 1 for (3) to be satisfied since βij ≤ 1, which implies q̄ > α/3.
Now, we have

arg max
qi

πi(qi, (q̄)j∈S\{i}) ≤ arg max
qi

πi(qi, q̄)

for all S such that |S| ≥ 2. Using our convention that β12 < β13 < β23, firms’ capacity is
smaller than the market size but strictly greater than firm i’s minimax quantity if and only
if q̄ and β12 are such that q̄ ∈ {α/3, α} and β12 ∈ (max{0, (α− 2q̄)/q̄}, 1].

Second, we exclude the possibility of monopolization. Since vi(i, j) is decreasing in βij,
this assumption is satisfied if and only if v3(2, 3) > 0 meaning that[

α− β23q̄

2

]2

− f > 0.

Third, we assume that {1, 2} and {1, 3} are the only two-firm cartels that are feasible.
This requires that v1(N) > 0, v2(N) < 0 and v3(N) < 0. Notice that v3(N) ≤ v2(N).
Furthermore, for v1(N) to be strictly positive, we must have β13 + β12 < α/q̄ and[

α− (β12 + β13)q̄

2

]2

− f > 0.

It is also possible to verify that v2(N) < 0 when

[max{0, [α− (β12 + β23)q̄]/2}]2 − f < 0.

Sufficient conditions for the assumptions made in section 2 to be satisfied can now be
found. For instance, these assumptions hold when

β23 < β12 + β13 < α/q̄

[max{0, [α− (β12 + β23)q̄]/2}]2 < f < [[α− (β12 + β13)q̄]/2]2 .
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Appendix B

To prove Proposition 2, we need to state and prove the following results. Remember that
we use Π1(β1j, q̄) as a short-hand notation for Π1(β1j, vj(1, j)).

Lemma 1. (i) If q̄ ≤ α[3 −
√

5]/2, then Π1(β1j, q̄) is a monotone decreasing function

of β1j and (ii) for any q̄ > α[3 −
√

5]/2, there exists a unique β̂(q̄) ∈ (0, 1) such that

∂Π1(β̂(q̄), q̄)/∂β1j = 0 and Π1(β1j, q̄) > Π1(β̂(q̄), q̄) ∀β1j 6= β̂(q̄).

Two corollaries can be derived.

Corollary 1. For any q̄ > α[3−
√

5]/2 and β13 > β̂(q̄), there exists a unique β̄(β13, q̄) < β13

such that Π1(β̄(β13, q̄), q̄) = Π1(β13, q̄).

Corollary 2. For all δ ∈ (δ̄, 1) there exists δ̄ < 1 such that: (i) vMδ1 (1, 3) > vMδ1 (1, 2) if

q̄ > α[3−
√

5]/2, β13 > β̂(q̄), and β12 > β̄(β13, q̄), and (ii) vMδ1 (1, 3) ≤ vMδ1 (1, 2) otherwise.

Let us denote by (q∗1, q
∗
j ) a solution of the following maximization problem

(M) max
q1,qj

π1(q1, qj) subject to πj(qj, q1) ≥ vj(1, j), q1 ∈ [0, q̄] and qj ∈ [0, q̄].

Since π1 and πj are strictly quasi-concave, the Kuhn-Tucker conditions are necessary and
sufficient for π1 to have a global maximum at (q∗1, q

∗
j ) subject to the constraints πj(q1, qj) ≥

vj(1, j), q1 ∈ [0, q̄] and qj ∈ [0, q̄]. From these conditions, we obtain

Claim 1. For any q̄ ∈ (α/3, α) and β1j ∈ (max{0, (α− 2q̄)/q̄}, 1], q∗1 ∈ (0,min{α/2, q̄}) and
q∗j ∈ (0,min{α/2, q̄}).

The restrictions on q̄ and β1j in Claim 1 are those required for the first assumption stated
in Appendix A to be satisfied.6 Using Claim 1, we obtain that (q∗1, q

∗
j ) solves (M) if and only

if there exists λ∗ ≥ 0 such that (q∗1, q
∗
j , λ

∗) is a solution to the following system of equations7

[α− 2q1 − β1jqj]− λβ1jqj = 0 (4)

− β1jq1 + λ[α− 2qj − β1jq1] = 0 (5)

[α− qj − β1jq1]qj − [(α− β1j q̄)/2]2 = 0 (6)

Because all conditions of the Implicit Function Theorem are satisfied, we can write q∗1 =
q1(β1j, q̄), q

∗
j = qj(β1j, q̄), λ

∗ = λ(β1j, q̄) where q1, qj, and λ are continuously differentiable
functions in some neighbourhood of (β1j, q̄). Before continuing, we state the following.

Claim 2. For any q̄ ∈ (α/3, α) and β1j ∈ (max{0, (α − 2q̄)/2}, 1], we have: (i) q∗j <
(α−β1j q̄)/2; (ii) if β1j = 1 then λ∗ = 1 and q∗1 + q∗j = α/2; (iii) ∂qj/∂β1j < 0; (iv) if β1j = 1
then ∂q1/∂β1j + ∂qj/∂β1j < 0; and (v) q∗1 + q∗j > α/2 if β1j < 1.

6We prove below that this assumption is sufficient for Lemma 1 to hold. Since the other two assumptions
mentioned in Appendix A possibly impose additional restrictions on the set of admissible values for q̄ and
β1j , Lemma 1 holds.

7Equation (5) together with Claim 1 imply that λ∗ must be strictly positive.
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Proof. (i) From (6), we have

[α− 2q∗j − β1jq
∗
1]q∗j =

[
α− β1j

2

]2

− (q∗j )
2.

The result follows since, from (5), the left-hand side of this equality is equal to β1jq
∗
1/λ

∗

which is strictly positive.
(ii) Remark that, with β1j = 1, (5) can be rewritten as

(λ∗ − 1)q∗1 − λ∗q∗j + λ∗[α− 2q∗1 − q∗j ] = 0.

Taking (4) into account and rearranging leads to

(λ∗ − 1)(q∗1 + λ∗q∗j ) = 0. (7)

λ∗ is therefore equal to 1 if β1j = 1 since we know that λ∗, q∗j and q∗1 are strictly positive.
Now, introducing β1j = 1 and λ∗ = 1 in (4) leads to q∗1 + q∗j = α/2.

(iii) Differentiating totally (4), (5), and (6), and using Cramer’s rule we find that

∂qj
∂β1j

= −|H|−1

{
β2

1jq
∗
j (1 + λ∗)

[
α− β1j q̄

2

]
q̄

+ [α− 2q∗j − β1jq
∗
1]

[
2q̄

(
α− β1j q̄

2

)
− 2q∗1q

∗
j + (q∗j )

2(1 + λ∗)β1j

]}
where

|H| = β2
1jq
∗
j

{
(1 + λ∗)[α− 2q∗j − β1jq

∗
1] + 2λ∗q∗j

}
+ [α− 2q∗j − β1jq

∗
1]
{

2[α− 2q∗j − β1jq
∗
1] + (1 + λ∗)β2

1jq
∗
j

}
.

(8)

The result follows since |H| > 0 and, from (i) and Claim 1, q∗1q
∗
j < q̄(α− β1j q̄)/2.

(iv) Totally differentiating (4), (5), and (6) and taking into account that β1j = 1 and
λ∗ = 1, we have

∂q1

∂β1j

+
∂qj
∂β1j

= −|H|−1[α− q∗j − q∗1]2q∗j [α− 2q∗j ]

= −|H|−12αq∗j q
∗
1.

The result follows since |H|, q∗1, and q∗j are strictly positive.
(v) First, let us show that, for any β1j ∈ (max{0, (α− 2q̄)/q̄}, 1), q∗1 + q∗j 6= α/2. Suppose

the contrary. (4) and (5) can be rewritten as

(2− β1j) = λ∗β1j, (9)[α
2
− q∗j

]
[λ∗(2− β1j)− β1j] = 0. (10)

Form (9) and the assumption that β1j ∈ (max{0, (α − 2q̄)q̄}, 1), it follows that λ∗ > 1.
Consequently, (10) implies that q∗j = α/2 which contradicts Claim 1. Hence, for any β1j ∈
(max{0, (α − 2q̄)q̄}, 1), q∗1 + q∗j 6= α/2. The result then follows from (ii) and (iv) since
q1(β1j, q̄) + qj(β1j, q̄) is continuous in β1j.
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Now, Π1(β1j, q̄) is the maximum value function of the maximization problem (M). For
any q̄ ∈ (α/3, α) and β1j ∈ (max{0, (α− 2q̄)q̄}, 1], we have from the envelope theorem

∂Π1(β1j, q̄)

∂β1j

= −(1 + λ∗)q∗1q
∗
j + λ∗

[
α− β1j q̄

2

]
q̄.

From (4) and (5), we obtain that

(1 + λ∗) =
α− 2q∗1
β1jq∗j

,

λ∗ =
(α− 2q∗1)q∗1
(α− 2q∗j )q

∗
j

.

Accordingly, ∂Π1(β1j, q̄)/∂β1j can be rewritten as

∂Π1(β1j, q̄)

∂β1j

=

[
λ∗

2β1j

]
h(β1j, q̄) (11)

where
h(β1j, q̄) = (α− β1j q̄)β1j q̄ − [α− 2qj(β1j, q̄)]2qj(β1j, q̄). (12)

From Claim 2-(i), h(β1j, q̄) = 0 if and only if β1j is such that 2qj(β1j, q̄) = β1j q̄. We can
then state

Claim 3. For any q̄ ∈ (α/3, α), there exists at most one value of β1j in (max{0, (α−2q̄)/q̄}, 1]
such that h(β1j, q̄) = 0. Furthermore, if there exists β0 ∈ (max{0, (α − 2q̄)/q̄}, 1] such that
h(β0, q̄) = 0 then h(β1j, q̄) > h(β0, q̄) for all β1j > β0 belonging to (max{0, (α− 2q̄)/q̄}, 1].

Proof. We prove these two results by showing that if there exists β0 ∈ (max{0, (α−2q̄)/q̄}, 1]
such that h(β0, q̄) = 0 then ∂h(β0, q̄)/∂β1j > 0.

After some computations, we obtain

∂h(β0, q̄)

∂β1j

= (α− 2β0q̄)

[
q̄ − 2

∂qj(β
0, q̄)

∂β1j

]
. (13)

By definition, β0 is such that 2qj(β
0, q̄) = β0q̄. But we know from Claim 2-(i) that qj(β1j, q̄) <

(α−β1j q̄)/2 for all q̄ ∈ (α/3, α) and β1j ∈ (max{0, (α− 2q̄)/q̄}, 1]. Therefore β0q̄ < α−β0q̄,
i.e., 2β0q̄ < α. It then follows that ∂h(β0, q̄)/∂β1j > 0 since, from Claim 2-(iii), we have
that ∂qj/∂β1j is strictly negative for all q̄ ∈ (α/3, α) and β1j ∈ (max{0, (α− 2q̄)/q̄}, 1].

The following result then completes the proof of Lemma 1.

Claim 4. For any q̄ ∈ (α/3, α[3−
√

5]/2], h(β1j, q̄) ≤ 0 for all β1j ∈ (max{0, (α− 2q̄)/q̄}, 1]
with a strict inequality if β1j 6= 1. Furthermore, for any q̄ ∈ (α[3−

√
5]/2, α) there exists a

unique β1j belonging to (max{0, (α− 2q̄)/q̄}, 1) such that h(β1j, q̄) = 0.

Proof. We proceed in three steps.
(a) To begin with, we show that, for all q̄ ∈ (α/3, α), h(β1j, q̄) < 0 for any β1j sufficiently

close to max{0, (α−2q̄)/q̄}. For such β1j, β1j q̄ is strictly smaller than α/2 for all q̄ ∈ (α/3, α).
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Consequently, for all q̄ ∈ (α/3, α) and β1j sufficiently close to max{0, (α−2q̄)/q̄}, h(β1j, q̄) <
0 if and only if β1j q̄ < 2qj(β1j, q̄). Suppose then that q̄ ≥ α/2 so that max{0, (α− 2q̄)/q̄} =
0. For all q̄ ∈ (α/3, α) and all β1j ∈ (max{0, (α − 2q̄)/q̄}, 1], we know, from (6), that

q∗j > α/2−
√
β1j q̄(2α− β1j q̄)/4 and hence qj(β1j, q̄) > α/2−

√
q̄(2α− q̄)/4 > 0. It follows

that β1j q̄ < 2qj(β1j, q̄) for β1j sufficiently close to 0 and for all q̄ ∈ [α/2, α). Consider then
the case where q̄ < α/2 so that max{0, (α − 2q̄)/q̄} = (α − 2q̄)/q̄. It can be verified that
β1j q̄ < 2qj(β1j, q̄) can be rewritten as

(β1j + 2)q̄ − α < 2qj(β1j, q̄) + 2q̄ − α. (14)

The left-hand side of (14) tends to 0 when β1j → (α − 2q̄)/q̄. Since qj(β1j, q̄) is strictly
decreasing in β1j (see Claim 2-(iii)), qj(β1j, q̄) > qj(1, q̄) for all β1j ∈ ((α− 2q̄)/q̄, 1). Taking
into account that q∗1 +q∗j = α/2 when β1j = 1, we obtain from (6) that qj(1, q̄) = (α− q̄)2/2α.
Consequently, the right-hand side of (14) is strictly greater than q̄2/α for all β1j ∈ ((α −
2q̄)/q̄, 1). Therefore, for all q̄ ∈ (α/3, α/2), h(β1j, q̄) < 0 for β1j sufficiently close to (α−2q̄)/q̄.

(b) The next step in the proof of Claim 4 is to find the sign of h(β1j, q̄) when β1j = 1.
Consider first the case where q̄ ≥ α/2. Since h(1, q̄) = q̄(α − q̄) − (α − 2q∗j )2q

∗
j and, from

Claim 2-(i), 2q∗j < α − q̄, we obtain that h(1, q̄) > 0 for all q̄ ∈ [α/2, α). Consider then the
case where q̄ ∈ (α/3, α/2). For such q̄, we can verify that

h(1, q̄) T 0 if q̄ − 2qj(1, q̄) T 0.

From (6), 2qj(1, q̄) = (α − q̄)2/α so that q̄ − 2qj(1, q̄) > 0 for all q̄ ∈ (α[3 −
√

5]/2, α/2),
q̄ − 2qj(1, q̄) < 0 for all q̄ ∈ (α/3, α[3−

√
5]/2) and q̄ − 2qj(1, q̄) = 0 when q̄ = α[3−

√
5]/2.

Consequently, we have h(1, q̄) > 0 for all q̄ ∈ (α[3 −
√

5]/2, α/2), h(1, q̄) < 0 for all q̄ ∈
(α/3, α[3−

√
5]/2) and h(1, q̄) = 0 when q̄ = α[3−

√
5]/2.

(c) Claim 4 can then be obtained by using the results in (a) and (b) together with Claim
3. First, for all q̄ ∈ (α/3, α[3−

√
5]/2), we know that h(1, q̄) < 0. Since h(β1j, q̄) is strictly

negative for all q̄ ∈ (α/3, α) and β1j sufficiently close to max{0, (α−2q̄)/q̄}, Claim 3 ensures
that h(β1j, q̄) < 0 for all q̄ ∈ (α/3, α[3 −

√
5]/2) and for all β1j ∈ (max{0, (α − 2q̄)/q̄}, 1].

Second, for all q̄ ∈ (α[3−
√

5]/2, α), h(1, q̄) > 0 and, by Claim 3 together with h(β1j, q̄) < 0
for β1j sufficiently close to max{0, (α − 2q̄)/q̄}, we obtain that there exists a unique β1j ∈
(max{0, (α− 2q̄)/q̄}, 1) such that h(β1j, q̄) = 0. Finally, if q̄ = α[3−

√
5]/2 then h(1, q̄) = 0

and h(β1j, q̄) is therefore strictly negative for all β1j ∈ (max{0, (α− 2q̄)/q̄}, 1).
With all those results, Proposition 2 is proven.

Appendix C

We want to prove that β̂(q̄) and β̄(β13, q̄) are monotone decreasing with respect to q̄. (a)
∀q̄ ∈ (α[3−

√
5]/2, α), β̂ is such that h(β̂, q̄) = 0. We therefore have

d β̂

d q̄
= − ∂h/∂q̄

∂h/∂β1j

.

The result follows since we have shown in the proof of Claim 3 that ∂h(β̂, q̄)/∂β1j is strictly

positive and that it can be verified that ∂h(β̂, q̄)/∂q̄ is strictly positive.
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(b) ∀q̄ ∈ (α[3−
√

5]/2, α) and β13 > β̂(q̄), β̄ is such that Π1(β̄, q̄) = Π1(β13, q̄). Hence,

d β̄

d q̄
= − [∂Π1(β̄, q̄)/∂q̄ − ∂Π1(β13, q̄)/∂q̄]

∂Π1(β̄, q̄)/∂β1j

.

By the definition of β̄, ∂Π1(β̄, q̄)/∂β1j is strictly negative. From tedious computations, we can
obtain that for any β0, β1 with 0 < β0 < β1 < 1 we have ∂Π1(β0, q̄)/∂q̄−∂Π1(β1, q̄)/∂q̄ < 0.
The result then follows since β̄(β13, q̄) is strictly smaller than β13.
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