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1 Introduction

Large market orders placed by institutional investors have market impact on asset price. When

the market is volatile, these orders will strengthen market volatility and increase overall trans-

action costs. Chiyachantana et al. (2004) point out the underlying market condition is a major

determinant of the price impact and there exists the asymmetry between price impacts of insti-

tutional buy and sell orders. In order to reduce the market impact, institutional traders often

to split the large order into smaller pieces and subsequently submit them throughout a prede-

termined trading period. The challenge is how to optimally distribute the entire order to several

single submissions in the market so that the overall market impact can be minimized. Bertsi-

mas and Lo (1998), Almgren and Chriss (2000), Almgren (2003), Obizhaeva and Wang (2013),

Almgren and Lorenz (2007), Schöneborn and Schied (2009), Alfonis et al. (2010), and Sun et al.

(2013) have addressed problems of this type. Financial institutions develop algorithmic trading

techniques to manage the order and reduce the market impact with respect to optimal trade ex-

ecution. Several studies provide the computational algorithms for solving the optimal strategy,

see Sun et al. (2013) and references therein.

We consider the problem of optimal trading (execution) problem in a limit-order-book market

where the trade occurs when buy and sell orders match (see Bertsimas and Lo (1998), Almgren

and Chriss (1999, 2000), and Obizhaeva and Wang (2013)). In our model, we assume the

underlying price dynamics follows a geometric Brownian motion instead of using a Brownian

motion for the price dynamics by Obizhaeva and Wang (2013) and martingale by Alfonsi et

al. (2010). The advantage of using geometric Brownian motion is that we can model jumps

in the underlying asset prices with a variable for drift. In this way, we can model both bullish

and bearish markets by assuming (or estimating) a significant value of positive or negative drift

respectively. It makes the model more flexible, particularly for the volatile market to capture

trading activities of driving down and moving up the market after some large trades. In addition,

a geometric Brownian motion guarantees there are no negative asset prices (see Alfonsi et al.

2010). We show that it is important to incorporate jumps (i.e., unexpected price changes) of

market when the institutional investors looking for the optimal trading strategy. The higher

the altitude market moves to one direction (upward or downward), the more important the drift

variable considered in our model turns to be. We show that the market volatility (measured

by the variance of underlying price changes) has no significant influence on our optimal trading

model.

2 The Model

A representative trader seeks to execute an order with size X0(X0 > 0) for a security during a

given trading period [0, T ](T > 0). This order is a market order for buying or selling certain

amount of securities. In this paper, we focus only on buying order, since this model can be easily

adopted for selling order. In this model, the trader is only allowed to trade at discrete time.1789
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The trader is only allowed to buy certain number of securities at time point N + 1 during the

trading period, which are equidistantly distributed and not in between of them. N ∈ {1, 2, . . .}
stands for the trading frequency. ti(i ∈ 0, . . . , N) are time points starting at t0 = 0 and ending

in tN = T . We then write ti = iτ , where τ = T/N is the length of the duration between two

successive time points being able to trade. We define xtn as the number of securities we buy at

time point tn. Then we have X0 =
N∑
n=0

xtn . We define Xtn = X0−
n−1∑
i=0

xti as the remaining order

to be executed at the time t before trading at tn. The trader is not allowed to sell securities

before the buying task is completed, i.e., xtn ≥ 0. The space of feasible strategies is then defined

as follows:

Φ =

{
{xt0 , . . . , xtN} : xtn ≥ 0 ∀ n ∈ {0, . . . , N} ;

N∑
n=0

xtn = X0

}
.

We assume the asset price movement follows a geometric Brownian motion with the drift µ,

variance σ, and initial value F0 = A0.

Ft = F0 exp
(
(µ− σ2

2
)t+ σBt

)
, (1)

which is the solution to

dFt = µFtdt+ σFtdBt,

where σ > 0 and (Bt)t>0 is a Brownian motion defined on a given probability space (Ω, F, P )

with the natural filtration (Ft)t>0 through Bt generated. We assume the bid-ask spread s > 0

is constant and symmetric around the asset price. The limit-order book is modeled by using a

constant depth q, which means that we increase the price by 1 unit, if we execute a buy order of

the size q. In general this translates into the price impact of an order xtn is xtn/q. The average

price impact of the whole order is xtn/2q. We decompose the price impact into the permanent

and temporary price impact. The price impact of an order xtn has two parts xtn/q = λxtn +κxtn ,

where 0 ≤ λ ≤ 1/q is the percentage of the permanent price impact and κ = 1/q − λ is the

percentage of the temporary price impact contributed respectively to the total price impact. We

call the term λxtn with 0 ≤ λ ≤ 1/q the permanent price impact of the trade xtn and κxtn with

κ = 1/q−λ the temporary price impact. The temporary price impact of an order vanishes along

with time and we use a resilience factor ρ > 0 to describe it. The part of the temporary price

impact of the order xtn that remains until t > tn is κxtne
−ρ(t−tn), where ρ > 0 is the resilience

factor.

The temporary price impact at time point tn before we make a trade is defined as Dtn =
n−1∑
i=0

xtiκe
−ρ(tn−ti). To simplify, we use the following proposition.

Proposition 1 The temporary price impact Dtn at tn before we make a trade, satisfies the

recursive equation Dtn = (Dtn−1 + κxtn−1)e
−ρτ with an initial condition D0 = 0.
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Proof 1 The starting condition D0 = 0 is satisfied because we make no trades before t0 = 0 and

we are the only trader who create the temporary price impact. For n = 1 we use the definition of

Dtn to define that Dtn = xt0κe
−ρ(t1−t0) = (0 + xt0κ)e−ρτ , which satisfies the recursive equation.

Then we have

Dtn =
n−1∑
i=0

xtiκe
−ρ(tn−ti)

= (
n−2∑
i=0

xtiκe
−ρ(tn−1−ti) + xtn−1κ)e−ρ(tn−tn−1)

= (Dtn−1 + xtn−1κ)e−ρ(tn−tn−1).

The objective function of our model is to minimizes the expected cost of the whole order, that

is,

min
x0, ..., xT

(
E

N∑
n=0

xtn
(
Ftn +

s

2
+ λ(X0 −Xtn) +Dtn +

xtn
2q

))
.

3 Analytical Solution

We derive the following propositions to find the solution based on Obizhaeva and Wang (2013).

Proposition 2 For the geometric Brownian motion Ft defined by Equation (1), the following

equations

Et−1[Ft] = Ft−1e
µτ (2)

and

Et−1[F
2
t ] = F 2

t−1e
(2µ+σ2)×τ (3)

are valid.

Proposition 3 Given the model setting described in Section 2, the strategy xtN = XtN and

xtn = −1

2
δn+1

(
(−λ− 2bn+1 + gn+1e

−ρτκ)Xtn

+(1 + cn+12κe
−2ρτ − gn+1e

−ρτ )Dtn

+(1− aN−n − hn+1a+ ln+1κe
−ρτa)Ftn

)
(4)

for every tn ∈ {t0, . . . , tN−1} is optimal, if (xt0 , . . . , xtN ) ∈ Φ. The optimal value function then

has the form

Jtn(Xtn , Dtn , Ftn , tn) = (aN−nFn +
s

2
)Xtn + λX0Xtn + bnX

2
tn

+cnD
2
tn + dnF

2
tn + gnXtnDtn + hnXtnFtn + lnDtnFtn , (5)1791
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where a = eµτ , m = e(2µ+σ
2)×τ , and the coefficients are given as follows:

bn = bn+1 −
1

4
δn+1(−λ− 2bn+1 + gn+1e

−ρτκ)2,

cn = cn+1e
−2ρτ − 1

4
δn+1(1 + cn+12κe

−2ρτ − gn+1e
−ρτ )2,

dn = dn+1m−
1

4
δn+1(1− aN−n − hn+1a+ ln+1κe

−ρτa)2,

gn = gn+1e
−ρτ − 1

2
δn+1(1 + cn+12κe

−2ρτ − gn+1e
−ρτ )

(−λ− 2bn+1 + gn+1e
−ρτκ),

hn = hn+1a−
1

2
δn+1(−λ− 2bn+1 + gn+1e

−ρτκ)

(1− aN−n − hn+1a+ ln+1κe
−ρτa),

ln = ln+1e
−ρτa− 1

2
δn+1(1− aN−n − hn+1a+ ln+1κe

−ρτa)

(1 + cn+12κe
−2ρτ − gn+1e

−ρτ ),

δn+1 = (
1

2q
+ bn+1 − gn+1κe

−ρτ + cn+1κ
2e−2ρτ )−1, (6)

for every tn ∈ {t0, . . . , tN−1}, and the terminal conditions given by

bN =
1

2q
− λ, cN = 0, dN = 0, gN = 1, hN = 0, and, lN = 0. (7)

In proposition (3) the optimal strategy at time point tN is given by xtN = XtN , because in

the last period the trader has no better possibility but to complete the whole order immediately,

so that the constraint
N∑
n=0

xtn = X0 will not be violated. We can transform the last equation to

obtain xtN = XtN = X0 −
N−1∑
n=0

xtn , which means the trader has to buy the amount of remaining

shares Xtn .

From Equation (6) and (7) we can see that the variance σ2 of the underlying price movement

Ftn only influences the parameter m, which in turn also appears in the recursive definition of

the coefficient dn. As the coefficient dn has no impact on other coefficients, it will not directly

influence the optimal strategy. Therefore, we see that the optimal strategy does not depend on

the variance of underlying price. The reason for this observation is that the trader only focuses

on completing the whole trade at the given trading period.

4 Numerical Study

We investigate performance of our optimal trading model (S-K) with numerical simulations.

We compare our model with that of Obizhaeva and Wang (2013) (O-W) and the naive trading

(Naive). We use the volume weighted average price (VWAP) as the benchmark to decide the
1792
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during-trading cost measure of these trading strategies (see, for example Werner (2003) and

Goldstein et al. (2009)). Following Obizhaeva and Wang (2013), we predefine the variables that

describe the limit order book as q = 5, 000, λ = 1/2q, κ = 1/q−λ, ρ = 2.2, N = 9, X0 = 100, 000,

T = 1, µ ∈ {−2%,−1%, 0%, 1%, 2%, 3%}, and σ ∈ {1%, 2%, 3%, 5%, 10%}, for this study.

Figure 1 illustrates the trading behavior of our model. We see that our strategy changes

along with the underlying asset price driven by the geometric Brownian motion, which different

from the optimal trading model suggested by Obizhaeva and Wang (2013). But we still observe

the U-shape trading behavior suggested by Obizhaeva and Wang (2013).

We conduct the simulation for 100,000 runs in order to verify the consistence of statistical

significance. We report the results in Table 1. We see that our model has the smallest value of

VWAP and is preferred to the alternatives. We summarize the results by Figure 2. From Figure

2, we can see when µ 6= 0%, which means there exists either the bullish (µ > 0%) or the bearish

(µ < 0%) market, our optimal trading model performs superior than both alternatives trading

models, which means our optimal trading model has lowest trading cost. When µ = 0%, the

performance of our trading model coincides with that of Obizhaeva and Wang (2013). We can

see that our optimal trading model performs significantly better when the market turns to be

extremely upward (bullish) or downward (bearish).

5 Conclusion

In this paper, we construct an optimal trading model based on the resilience models discussed

in the literature. In our model, we allow the underlying price dynamics follow the geometric

Brownian motion that makes the model much flexible to capture price jumps. We adopt the

linear price impact function in our model, that is, a linear combination of the permanent and

temporary price impact is characterized by the price impact function. We also focus on the

discrete-time setting as other studies documented in literature. When using the VWAP as the

trading cost measure, numerical results given by the simulations show that our optimal trading

model performs generally better. In addition, our model significantly dominates the naive trading

strategy and strategy suggested by Obizhaeve and Wang (2013) when the market experiences

extreme bullish or bearish situation.
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Figure 1: Optimal order behavior of the proposed model with different values of µ.
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Figure 2: Comparison of expected transaction cost for different models.

Table 1: Comparison of different models using the expected value of VWAP and its variance

(shown in parenthesis) for 100,000 runs of simulation for different combinations of parameters of

the geometric Brownian motion.
µ=-10% µ=-5% µ=-1% µ=1% µ=5% µ=10%

S-K 99.7665 (0.8944) 104.1680 (0.6446) 106.8575 (0.3349) 107.8566 (0.2189) 109.1661 (0.0667) 110.0000 (0.0000)

σ=1% O-W 102.3428 (0.2843) 104.8722 (0.2775) 106.8836 (0.2717) 107.8846 (0.2706) 109.8751 (0.2678) 112.3470 (0.2649)

Naive 102.5205 (0.3430) 105.0804 (0.3308) 107.0991 (0.3195) 108.0996 (0.3157) 110.0852 (0.3079) 112.5257 (0.2996)

S-K 99.7616 (1.7799) 104.1683 (1.2946) 106.8600 (0.6761) 107.8591 (0.4357) 109.1654 (0.1350) 110.0000 (0.0000)

σ=2% O-W 102.3452 (0.5693) 104.8731 (0.5587) 106.8849 (0.5474) 107.8877 (0.5420) 109.8751 (0.5359) 112.3465 (0.5244)

Naive 102.5156 (0.6840) 105.0815 (0.6544) 107.0967 (0.6383) 108.0985 (0.6288) 110.0776 (0.6180) 112.5278 (0.5944)

S-K 99.7636 (2.6755) 104.1652 (1.9306) 106.8549 (1.0053) 107.8584 (0.6580) 109.1673 (0.2010) 110.0000 (0.0000)

σ=3% O-W 102.3412 (0.8549) 104.8751 (0.8341) 106.8842 (0.8205) 107.8837 (0.8168) 109.8774 (0.7947) 112.3462 (0.7962)

Naive 102.5217 (1.0204) 105.0817 (0.9832) 107.1025 (0.9670) 108.0946 (0.9387) 110.0793 (0.9249) 112.5320 (0.8967)

S-K 99.7642 (4.4405) 104.1635 (3.2364) 106.8564 (1.6824) 107.8575 (1.0920) 109.1612 (0.3347) 110.0000 (0.0000)

σ=5% O-W 102.3369 (1.4307) 104.8707 (1.3905) 106.8775 (1.3697) 107.8805 (1.3625) 109.8777 (1.3371) 112.3448 (1.3075)

Naive 102.5203 (1.7104) 105.0740 (1.6394) 107.0941 (1.5983) 108.0988 (1.5829) 110.0802 (1.5415) 112.5235 (1.4900)

S-K 99.7716 (8.8818) 104.1672 (6.4790) 106.8683 (3.3227) 107.8617 (2.1836) 109.1643 (0.6683) 110.0000 (0.0000)

σ=10% O-W 102.3365 (2.8652) 104.8667 (2.7721) 106.8834 (2.7429) 107.8790 (2.7345) 109.8881 (2.6655) 112.3422 (2.6464)

Naive 102.5227 (3.4170) 105.0831 (3.2650) 107.0944 (3.2299) 108.0951 (3.1675) 110.0706 (3.0917) 112.5368 (2.9909)
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