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1 Introduction

Pollution can affect both the household’s preferences and the technology. The effect
of pollution on the household’s utility is widely explored in the literature. Since
Heal (1982) and Michel and Rotillon (1996), it is well-known that a positive pollu-
tion effect on the marginal utility of consumption may lead to a limit cycle through
a Hopf bifurcation. Using an endogenous growth framework, very close to Benhabib
and Farmer (1994), Itaya (2008) shows also that the non-separability between con-
sumption and pollution in the utility function enhances the range of parameters for
which local indeterminacy occurs.

However, the effect of pollution on the production sector seems to be neglected.
From a theoretical point of view, the relation between pollution and growth is am-
biguous. On one hand, pollution can decrease growth through its negative effect
on health and in turn on worker productivity (Schlenker and Walker (2011) and
Graff Zivin and Neidell (2012)). On the other hand, pollution can increase growth
through its relation with inputs of production (Diao and Roe (1997)). To the best
of our knowledge, one of the first empirical investigation of the effect of pollution
on the total factor productivity is Empora and Mamuneas (2011). Using a data set
for 48 contiguous U.S States for the period 1965-2002, they found that air pollution,
namely sulphur dioxide (SO2) and nitrogen oxide (NOx), affects positively the TFP
for all States.

The present paper develops a competitive Ramsey economy where pollution af-
fects both the consumption behavior and the technology (through TFP). Within
this simple framework, we find that the positive effect of pollution on TFP is able
to reduce the effect of pollution on the marginal utility of consumption for which a
Hopf bifurcation occurs. To put it another way, we show that the effect, empirically
stressed by Empora and Mamuneas (2011), makes endogenous business cycles more
likely to occur.

The paper is organized in three parts: (1) presentation of the theoretical frame-
work, (2) discussion of conditions for the occurrence of a Hopf bifurcation and (3)
conclusion.

2 The model

We consider a continuous-time Ramsey economy with pollution and capital accumu-
lation. Pollution is a by-product of industrial activities and affects simultaneously
the TFP and the individual welfare by distorting the individual consumption be-
havior.

2.1 Technology

At time t, a representative firm produces a single output Y (t). Technology is repre-
sented by a constant returns to scale production function: Y (t) = A (t)F (K (t) , L (t)),
where A (t) is the TFP, K (t) and L (t) are the demands for capital and labor at
time t.
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Assumption 1 The production function F : R2
+ → R+ is C1, homogeneous of

degree one, strictly increasing and concave. Standard Inada conditions hold.

The firm chooses the amount of capital and labor to maximize its profit taking
as given the real interest rate r (t) and the real wage w (t). In the following, for
notational simplicity, we will omit the time argument t.

The program maxK,L [F (K,L)− rK − wL] is correctly defined under assump-
tion 1 and the first-order conditions write:

r = Af ′ (k) ≡ Ar (k) (1)

w = A [f (k)− kf ′ (k)] ≡ Aw (k) (2)

where f (k) ≡ F (k, 1) is the average productivity and k = k (t) ≡ K (t) /L (t)
denotes the capital intensity at time t. We introduce the capital share in total
income α and the elasticity of capital-labor substitution σ:

α (k) ≡
kf ′ (k)

f (k)

σ (k) = α (k)
w (k)

kw′ (k)

2.2 The representative household

The household earns a capital income rh and a labor income wl where h = h (t)
and l = l (t) denote the individual wealth and labor supply at time t. For simplic-
ity, we assume that the household supplies inelastically his labor such that l = 1.
The household’s incomes are consumed and saved/invested according to the budget
constraint:

ḣ ≤ (r − δ)h + w − c (3)

The gross investment includes the capital depreciation at the rate δ.
For simplicity, the population of consumers-workers is constant over time: N = 1.

Such normalization implies L = Nl = l = 1, K = Nh = h and h = K/N = kl = k.

In the following, P denotes the aggregate level of air pollution.

Assumption 2 Preferences are given by the following non-separable utility func-
tion: u (c, P ) with uc > 0, uP < 0 as first-order restrictions and ucc < 0, ucP > 0
as second-order restrictions, and limc→0+ uc = ∞ as a limit conditions.

The condition ucP > 0 implies that pollution enhances the marginal utility of
consumption. This is the compensation effect stressed by Michel and Rotillon (1996).

We introduce the two following elasticities :
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εcc ≡
cucc
uc

εcP ≡
PucP
uc

Where εcc is the inverse of the well-known intertemporal elasticity of consump-
tion and εcP captures the effect of pollution on marginal utility of consumption.
Assumption 2 implies that εcc < 0 and εcP > 0.

The agent maximizes the intertemporal utility function
∫

∞

0
e−ρtu (c, P ) dt under

the budget constraint (3) where ρ > 0 is the rate of time preference. This program
is correctly defined under assumption 2.

Proposition 1 The first-order conditions result in a static relation

uc − λ = 0 (4)

a dynamic Euler equation λ̇ = λ (ρ+ δ − r) and the budget constraint (3) now bind-
ing k̇ = (r − δ) k+w−c jointly with the transversality condition limt→∞ e−ρtλ (t) k (t) =
0.

Proof. As usual the Hamiltonian function write :

H = e−ρtu (c, P ) + λ̃ [(r − δ) k + w − c]

posing λ = eρtλ̃ and the last proposition follows.

Assumption 2 ensures that the first order conditions given in proposition 1 are
necessary and sufficient for optimality (See Mangasarian 1966).

2.3 Pollution

The aggregate stock of air pollution P is a pure externality. Technology is dirty
and pollution persists. As in Michel and Rotillon (1996), we assume a simple linear
process:

Ṗ = −aP + bY (5)

where a ≥ 0 captures the natural rate of pollution absorption and b ≥ 0 the environ-
mental impact of production. According to assumption 1, the process of pollution
accumulation (5) writes:

Ṗ = −aP + bAf (k)

In addition, as it was empirically stressed by Empora and Mamuneas (2011), we
assume that pollution positively affect the TFP according to:

Assumption 3 The total factor productivity function A : R+ → R+ is C1 and
strictly increasing: A′ (P ) > 0 for every P ≥ 0. The following boundary conditions
hold: limP→0A (P ) = 0 and limP→+∞A (P ) = +∞.
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We introduce the following elasticity :

θ ≡
PA′ (P )

A (P )

θ captures the effect of pollution on the TFP.

2.4 Equilibrium

At the equilibrium, all markets clear. Applying the Implicit Function Theorem on
the static relation (4), we obtain that c is a function of (λ, P ), that is c = c (λ, P )
such that :

λ

c

∂c

∂λ
=

1

εcc
P

c

∂c

∂P
= −

εcP
εcc

It follows from assumption 2 that ∂c
∂λ
< 0 and ∂c

∂P
> 0.

Proposition 2 The equilibrium transition is represented by the following dynamic
system:

λ̇

λ
= g1 (λ, k, P ) = ρ+ δ − A (P ) r (k) (6)

k̇

k
= g2 (λ, k, P ) = A (P ) r (k)− δ + A (P )

w (k)

k
−
c (λ, P )

k
(7)

Ṗ

P
= g3 (λ, k, P ) = −a + b

A (P )

P
f (k) (8)

Proof. Simply consider equations (1) and (2), proposition 1 and assumption 3.

2.5 Steady state

Our task now is to ensure the existence of a stationary solution for the system
defined by equations (6), (7) and (8) and to question its uniqueness. Since w (k) =
f (k)− r (k) k, a stationary solution is a triplet (λ∗, k∗, P ∗) ∈ R

3
+ satisfying :

A (P ) r (k) = ρ+ δ (9)
a

b
P − kδ = c (λ, P ) (10)

A (P )

P
f (k) =

a

b
(11)

Proposition 3 The system (6), (7),(8) may have multiple stationary solutions.
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Proof. See appendix.

To facilitate the analysis of the local dynamics, we assume now the following
specifications :

f (k) = kα (12)

A (P ) = P θ (13)

u (c, P ) =
(cP−η)

1−ε

1− ε
(14)

the next proposition gives conditions for the existence of a normalized steady
state (NSS)1

Proposition 4 If there is no capital depreciation (δ = 0), if α = ρ and a = b, then,
for every θ 6= 1− α, there is a unique steady state such that λ∗ = k∗ = P ∗ = 1.

Proof. Considering specification (12), (13) and (14), equations (9), (10) and (11)
become :

αP θkα−1 = ρ+ δ (15)
a

b
P − kδ = λ−

1
εP η(1− 1

ε) (16)

P θ−1kα =
a

b
(17)

since δ = 0, α = ρ and a = b, equation (15) gives that k = P
θ

1−α , injecting this

relation into (17) gives that P
θ−(1−α)

1−α = 1. Since θ 6= 1−α, the steady state is unique
and is such that λ∗ = k∗ = P ∗ = 1. The last proposition follows.

3 Conditions for the occurrence of a Hopf

bifurcation

Our task now is to study the dynamics near the NSS, more precisely, we want to
compare conditions for which a Hopf bifurcation occurs when θ = 0 and when θ > 0.

The utility function (14) implies that εcc ≡ −ε and εcP ≡ η (ε− 1). We set :

β ≡ εcP ≡ η (ε− 1)

Assumption 2 implies that β > 0.

Proposition 5 The Jacobian matrix J , evaluated at the NSS is defined by :

J =





∂g1
∂λ

∂g1
∂k

∂g1
∂P

∂g2
∂λ

∂g2
∂k

∂g2
∂P

∂g3
∂λ

∂g3
∂k

∂g3
∂P



 =





0 α (1− α) −αθ
1
ε

α θ − β

ε

0 αa a (θ − 1)





1See Cazzavillan et al (1998) among others for more details.
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Proof. See appendix.

Let ϕ the characteristic polynomial :

ϕ (ξ) = ξ3 − Tξ2 + Sξ −D

with :

D = ξ1ξ2ξ3 =
aα

ε
(1− α− θ) (18)

S = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 = −
α

ε
(1− α + a (ε− β)) (19)

T = ξ1 + ξ2 + ξ3 = α + a (θ − 1) (20)

where ξ1, ξ2 and ξ3 denote the three roots of ϕ, that is, the eigenvalues of J .

Assumption 4 α > a.

Proposition 6 J possesses two purely imaginary eigenvalues if and only if D = ST
with S > 0.

Proof. (Necessity) We want to prove that Re (ξ1) = Re (ξ2) = 0 when D = ST . If
ξ1 = iz and ξ2 = −iz with z 6= 0 and i2 = −1, it appears that D = z2ξ3, S = z2 and
T = ξ3, namely D = ST and S > 0.

(Sufficiency) We want to show that D = ST with S > 0 appears only when two
eigenvalues are complex conjugate with a zero real part. D = ST implies that :

(ξ1 + ξ2) (ξ1 + ξ3) (ξ2 + ξ3) = 0

That is, ξ1 = −ξ2, or ξ1 = −ξ3 or ξ2 = −ξ3. Without loss of generality we
consider the case where ξ1 = −ξ2 and ξ3 6= 0. In such a configuration, S > 0 imply
[

− (ξ2)
2] > 0. This is possible only if ξ2 is nonreal. If ξ2 is nonreal, then ξ1 is

conjugated and since ξ1 = −ξ2, they have a zero real part.
Let :

β1 =
α (1− α) + aε (α− a)

a (α− a)

β2 =
1− α

a
+ ε

and :

θ∗ =
a (a− α) (β − ε) + α (1− α)

a (α + a (β − ε))

Remark 1 β1 − β2 =
1−α
α−a

> 0 (see assumption 4).

2334



Economics Bulletin, 2013, Vol. 33 No. 3 pp. 2328-2339

Proposition 7 Assume that pollution has no effect on the TFP (θ = 0) :
If β < β1, J possesses two stable eigenvalues and an unstable one.
If β > β1, J possesses three unstable eigenvalues.
When β = β1, a limit cycle occurs near the NSS through a Hopf bifurcation.

Proof. When θ = 0, for every β > 0, D > 0, then there is only two possible
configurations, namely: 1) ξ1 < 0, ξ2 < 0, ξ3 > 0 or 2) ξ1 > 0, ξ2 > 0, ξ3 > 0. If
β < β2, S < 0 and then ξ1 < 0, ξ2 < 0, ξ3 > 0. Following proposition 6 and consider
relations (18), (19) and (20), ξ1 = iz and ξ2 = −iz with z 6= 0 and i2 = −1 when
β = β1, indeed D = ST with S = aα 1−α

ε(α−a)
(assumption 4 ensures that S > 0). In

addition, ∀β 6= β1 we have D 6= ST which implies that ξ1 and ξ2 cross the imaginary
axis with a non zero speed and since ∀β ∈ R, D 6= 0 (implying that ξ3 6= 0), it
follows that a Hopf bifurcation occurs if and only if β = β1 (see Hale and Koçak
(1991) among others). Finally, since there is no room for a saddle-node bifurcation
(D > 0), the fact that β1 > β2 indicates that ξ1 < 0, ξ2 < 0, ξ3 > 0 for every
β < β1. Finally, at the Hopf bifurcation point, two eigenvalues change their sign
simultaneously, that is, for every β > β1, ξ1 > 0, ξ2 > 0, ξ3 > 0.

The next proposition gives conditions for which a Hopf bifurcation occurs when
pollution is assumed to enhance the TFP.

Proposition 8 Assume that pollution enhance the TFP (θ > 0) and assume also

that β2 < β < ε+ α(1−α)
α−a

:
If θ < θ∗, J possesses two stable eigenvalues and an unstable one.
If θ∗ < θ < 1− α, J possesses three unstable eigenvalues.
If θ > 1− α, J possesses two unstable eigenvalues and an stable one.
When θ = θ∗ a limit cycle occurs near the NSS through a Hopf bifurcation and

when θ = 1− α, a saddle-node bifurcation occurs.

Proof. Assumption 4 implies that T > 0, that is, there is always an unstable
eigenvalue (indeterminacy is ruled out). In addition, D > 0 when θ < 1− α, D = 0
when θ = 1−α and D < 0 when θ > 1−α. It follows that a saddle-node bifurcation
occurs near the NSS when θ = 1−α, in such a case the eigenvalues are simply given
by :

ξ1 =
1

2
α (1− a) +

1

2

√

α

ε

(

αε (a− 1)2 − 4 (a (β − ε)− (1− α))
)

ξ2 =
1

2
α (1− a)−

1

2

√

α

ε

(

αε (a− 1)2 − 4 (a (β − ε)− (1− α))
)

ξ3 = 0

the condition β < ε+ α(1−α)
α−a

ensures that ξ1 and ξ2 are two positive real number
and since D < 0 when θ > 1−α, it follows that ξ1 > 0, ξ2 > 0 and ξ3 < 0 (remember
that T > 0) when θ > 1− α.

In addition θ = θ∗ implies D = ST with S > 0 (indeed β > β2), following
proposition 6, it induces that ξ1 = iz and ξ2 = −iz with z 6= 0 and i2 = −1. In
addition, ∀θ 6= θ∗, we have D 6= ST which implies that ξ1 and ξ2 cross the imaginary
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axis with a non zero speed and since θ∗ 6= 1 − α, ξ3 6= 0, thus a Hopf bifurcation
occurs near the NSS if and only if θ = θ∗ (see Hale and Koçak (1991) among others).

Finally, for β > β2:

(1− α)− θ∗ =
α (1− a)

a

α + a (β − ε)− 1

α + a (β − ε)
> 0

Since a Hopf bifurcation indicates that two eigenvalues change their sign simul-
taneously, proposition 8 follows.

Remark 2 The occurrence of a saddle-node bifurcation is not surprising since
the NSS loses its uniqueness when θ = 1− α. (See proof of proposition 4).

Proposition 9 The positive pollution effect on the TFP (θ > 0) reduces the effect
of pollution on the marginal utility of consumption for which a limit cycle occurs.

Proof. Simply consider propositions 7, 8 and remark 1.

4 Conclusion

Through this paper, we have developed a Ramsey model in which pollution affects
positively both the TFP and the consumption behavior. After giving the general
conditions for which a Hopf bifurcation occurs, we find that the positive effect of
pollution on the TFP, empirically stressed by Empora and Mamuneas (2011), makes
endogenous business cycles more likely to occur since it reduces the effect of pollution
on the marginal utility of consumption for which a Hopf bifurcation occurs.
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5 Appendix

Proof of proposition 3 :

Applying the implicit functions theorem on equation (9) gives that k = k (P )
with :

k′ (P ) = −
A′ (P ) r (k)

A (P ) f ′′ (k)
> 0

equations (10) then becomes :

a

b
P − δk (P ) = c (λ, P ) (21)

From the implicit function theorem, equation (21) gives that λ = ψ (P ) with :

ψ′ (P ) = −
∂c
∂P

− a
b
+ δk′ (P )
∂c
∂λ

Let µ (P ) = A(P )
P
f (k (P )), it follows :

µ′ (P ) =
A (P ) f (k (P )) (θ − 1) + A (P ) f ′ (k) k′ (P )P

P 2

assumption 2 and 3 imply the non-monotonicity of ψ (P ) and µ (P ), indeed
ψ′ (P ) ≶ 0 and µ′ (P ) ≶ 0, and thus the possible multiplicity of stationary solutions.

Evaluation of the Jacobian matrix given in proposition 5 :
Derivatives of g1 (λ, k, P ) :

∂g1 (λ, k, P )

∂λ
= 0

∂g1 (λ, k, P )

∂k
=
λ

k

(ρ+ δ) (1− α)

σ
∂g1 (λ, k, P )

∂P
= −

λ

P
θ (ρ+ δ)

Indeed, at the steady state, A (P ) r (k) = ρ+ δ
Derivatives of g2 (λ, k, P ) :

∂g2 (λ, k, P )

∂λ
= −

(

a

b

P

λ
− δ

k

λ

)

1

εcc
∂g2 (λ, k, P )

∂k
= (ρ+ δ)

[

1−

(

1− α

σ

)]

− δ +

(

a

b

P

k
− ρ− δ

)

α

σ

∂g2 (λ, k, P )

∂P
= θ

a

b
+

(

a

b
− δ

k

P

)

εcP
εcc

indeed, notice that, at the steady state, A (P )w (k) = a
b
P − (ρ+ δ) k and c

P
=

a
b
− δ k

P
.

2337



Economics Bulletin, 2013, Vol. 33 No. 3 pp. 2328-2339

Derivatives of g3 (λ, k, P ) :

∂g3 (λ, k, P )

∂λ
= 0

∂g3 (λ, k, P )

∂k
= b (ρ+ δ)

∂g3 (λ, k, P )

∂P
= a (θ − 1)

Indeed, at the steady state, a
b
= A(P )f(k)

P
.

The Jacobian matrix becomes :

J =





0 λ
k

(ρ+δ)(1−α)
σ

− λ
P
θ (ρ+ δ)

−
(

a
b
P
λ
− δ k

λ

)

1
εcc

B θ a
b
+
(

a
b
− δ k

P

)

εcP
εcc

0 b (ρ+ δ) a (θ − 1)





With B = (ρ+ δ)
(

1−
(

1−α
σ

))

− δ +
(

a
b
P
k
− ρ− δ

)

α
σ

At the NSS, a = b, δ = 0, ρ = α, λ = k = P = 1 and σ = 1 (because f (k) = kα).
That is why, at the NSS, J becomes simply :

J =





0 α (1− α) −αθ
1
ε

α θ − β

ε

0 αa a (θ − 1)
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