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                                        1.  Introduction and motivation 

                                            

Propensity Score Matching (PSM) estimators (Rosenbaum and Rubin, 1983) are widely 

employed in observational studies to estimate treatment effects in economics (e.g., Black and 

Smith, 2004; Blanchflower and Bryson, 2004; Gibson, 2009; Lin and Lue, 2010). For 

instance, Gemici et al. (2012) comment (p. 220) that, in economic and other studies, PSM 

‘has become particularly prominent internationally’. Furthermore, a search of Google Scholar 

revealed that around 23,400 papers dated between 2002 and 2012 contained the phrase 

propensity score matching. Though the Rosenbaum bounds
1
 (RB) method enables an 

assessment to be made of how large the impact of a potential (simulated) unobserved 

confounding variable must be to challenge PSM treatment inferences, it does not test or 

control for selection bias. Hence a principal limitation of PSM treatment estimates is that the 

conditional independence assumption (CIA) is assumed to hold; specifically, that the PSM 

estimate of the average treatment effect on the treated (ATT) is not subject to unobserved 

selection bias (the ‘ignorability’ assumption). The development of techniques to control for 

endogenous PSM treatment effects is therefore of high import and utility.  

To our knowledge, this paper is the first to specify a method for testing and controlling 

for unobserved bias for matched ATT estimates. We augment the RB sensitivity approach 

(Rosenbaum, 2002; 2005; 2010), which simulates the combined impact of a potential hidden 

variable on selection into treatment and on the outcome variable, to formulate a Heckit 

control function PSM treatment model (e.g., Greene, 2006, p. 787). Following from this, we 

modify Rubin’s (1973; 1979) matched difference specification to incorporate Heckit selection 

terms for treated and untreated observations. Our method provides a statistical test for the 

potential failure of the CIA of no hidden bias for matched treatment estimates. If the CIA is 

rejected, bias adjusted treatment effects can be estimated with a modification to Rubin’s 

matched difference model. The method is applied in an examination of the British part-time 

(PT) women’s pay gap.   

It is important to stress at the outset that our specification shares the limitations of the 

standard Heckman model. In this paper we incorporate the Heckman parametric control 

function assumptions, particularly that of the joint normality of error terms. As with the 

Heckit model, these assumptions are relatively restrictive. In addition, although selection 

effects are formally identified from distributional error assumptions, it is desirable to employ 

                                                 
1
 See Caliendo and Kopeinig (2007) and Keele (2010) for RB specifications for binary and continuous outcomes 

respectively. 
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an additional instrumental variable
2
 (which may be difficult to obtain), not least to mitigate 

multicollinearity concerns (Puhani, 2000). 

As with other estimators which control for omitted variable bias, assumptions are more 

exacting than conventional methods. There is a trade-off between employing standard 

techniques and more exacting methods that aim to control for such bias. Given this, in 

Section 4 we outline potential extensions to our modelling approach. In particular, more 

flexible semiparametric and nonparametric estimators have been developed in the 

econometrics literature. To date, however, control function methods have focused on 

endogenously determined continuous variables (Wooldridge, 2012). For the sample selection 

problem, Huber (2013) develops a semiparametric IV-type estimator which employs inverse 

propensity scores (selection probabilities) to control for bias. Klein and Vella (2009) 

formulate an IV estimator to control for endogenous binary response variables for continuous 

outcomes, employing a semi-parametric selection model to estimate first-step fitted values. 

As described in Section 4, these more flexible methods have the potential to estimate control 

functions as applied in our modelling approach (Wooldridge, 2012, pp. 22-28).  

Although we demonstrate that our specification is consistent with PSM, RB and the 

Heckman treatment effect model - and our empirical results support expectations - our 

findings should be viewed as provisional. As discussed in Section 4, further simulation 

research is warranted to assess the properties of the proposed estimator, including robustness 

to misspecification, not least to the violation of the joint normality assumption. However, in 

defence of our parametric specification, Heckman and Vytlacil (2007), stress (p. 4783) that 

there has been slow progress in applying semiparametric and nonparametric methods to 

empirical problems and that they appear sensitive to parameter choices (including smoothing 

and trimming ones). They state that: 

‘Most of this literature is based on Monte Carlo analysis or worst case analyses on artificial    

samples. The  empirical  evidence  on  nonrobustness  of conventional parametric  models   is  

 

                                                 
2
 Where an instrumental variable is available, Imbens and Angrist (1994) have developed an IV method which 

identifies the local average treatment effect (LATE); which is (p. 467) ‘the average treatment effect for 

individuals whose treatment status is influenced by changing an exogenous regressor that satisfies an exclusion 

restriction.’ Based on instrumental variables, recent working papers have proposed tests for whether the CIA is 

valid. Given a binary instrument, and employing inverse probability weighted estimators, Donald et al. (2011) 

propose a Durbin-Wu-Hausman formulation to test for unconfoundness conditional on observable variables. De 

Luna and Johansson (2012) specify a non-parametric test of the CIA employing a quasi-instrument; that is (p. 

2), an instrument which is permitted ‘to be confounded by unobserved variables’. Based on the Heckman 

approach, our methodology provides both a test of whether the CIA holds for matched treatment effects and a 

means of controlling for omitted variable bias.  
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mixed … The evidence in Heckman and Sedlacek (1985) and Blundell, Reed and Stoker 

(2003) shows that normality is an accurate approximation to log earnings data in economic 

models of self-selection. The analysis of Todd (1996) shows that parametric probit analysis is 

accurate for even extreme departures from normality.’ 

In our empirical application, we employ both the log of earnings and a probit selection 

specification.  Specifically we examine the PT women’s pay gap (penalty) relative to their 

female full-time (FT) counterparts. The pay gap between men and women has been 

declining steadily over time (e.g., Pike, 2011; Joshi et al., 2007). This contrasts with the 

PT/FT pay gap for women. For example, Connolly and Gregory (2009) report unadjusted 

gaps of 15% in 1975, 21% in 1985 and 29% in 2001; while Pike (2011) demonstrates that 

the differential scarcely changes over the period to 1997 to 2010.  As well having import 

per se, these penalties have a substantial influence on overall gender differentials because 

the incidence of part-time work is much higher for women than for men. About 42-44% of 

women were working part-time in our data and a substantial number more will work part-

time at some point in their career (Connelly and Gregory, 2009).  

The full PT/FT women’s pay gap is therefore an important issue, not least for policy 

purposes, with a number of recent studies having identified a strong and robust unexplained 

part-time penalty (e.g., Connolly and Gregory, 2009; Manning and Petrongolo, 2008; 

Mumford and Smith, 2009; Neuberger et al., 2011). Our empirical application builds on the 

research of Manning and Petrongolo (2008) who report that the pay gap reduces substantially 

when occupation controls are included in their model. We examine selection effects for 

models with and without occupation controls. 

                                         2.  Econometric model 

 

2.1   Rosenbaum bounds methodology 

As discussed below, conceptually our methodology follows that of RB. An outcome variable 

(Y) varies between the treated group (D=1) and the untreated group (D=0). Let  be the set of 

treated and (pair) matched untreated observations in the common support. If Z is a vector of 

control variables, the propensity score is p(Zi)=Pr(D=1|Z). The PSM estimated ATT is 

defined as the difference in the sample means of the treated (Y1) and untreated observations 

(Y0) in :  

       
1 0 1 0

1 1
i i

ATT Y Y Y Y
N N

  
 

   
      
   

                                                       (1)  

 

where the subscript  indicates that the mean is for observations in the matched sample. 
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The RB method (see Rosenbaum, 2002; DiPrete and Gangl, 2004, for full derivations) 

provides an estimate of the impact a potential (simulated) unobserved confounding variable 

must exert to render ATT PSM treatment effects statistically insignificant via  its dual effect 

on selection and outcome (a control function approach). If Z is a vector of control variables 

determining the probability of treatment (Pr(D=1|Z)), the ratio of the odds ratios for two 

individuals, j and k with Zj=Zk, are specified as: 

                 
( )1

( )
  



j

k

Odds Z

Odds Z
   for j≠k, Zj=Zk                                       (2) 

This expression places bounds on the odds ratios.  is equivalent to the odds ratio 

associated with the coefficient of an unobserved variable in a logit selection model into 

treatment. If =1, subjects with the same attributes have the same probabilities and odds of 

selection into the treatment group (the CIA is assumed to hold) and matched treatment effects 

are bias free.  

Since Z contains all the observable information, deviations from =1 are attributed to 

unobserved confounding variables. For example, =2 indicates an unobserved covariate 

would double the odds of selection into treatment. Rosenbaum (2002; 2005) derives bounds 

on the confidence intervals for matched ATT estimates as  varies, thus defining a critical 

value of  at which the ATT is statistically insignificant.  

In the next Section we extend the PSM approach by formulating a Heckit treatment 

version of the RB model. Our methodology provides a specific test of the CIA for matched 

treatment estimates together with bias adjusted treatment effects when the CIA is rejected. 

The two approaches are very similar conceptually and consistent with each other. However, 

whereas the RB technique simulates the impact of a potential unobserved confounding 

variable (via its dual effect in a logit selection model into treatment and on the outcome 

variable), our method employs inverse Mills ratios (IMRs) from a probit selection model into 

treatment to correct (or test) for hidden bias for PSM treatment estimates.  

In this respect, the IMRs can be considered as a proxy for actual unobservables
3
. Whilst 

the RB technique simulates the impact of a potential confounding (omitted) variable, it does 

not test or control for omitted variable bias.  

                                                 
3
 In accord with the Heckman treatment effect model (and the standard assumptions as specified in the note), the 

IMRs (selection model errors) are surrogates for one or more unobservable (confounding) variables. As stated, 

conceptually, this is similar to the RB simulation method. Note also that, though the employment of an 

instrument is preferred, identification on distributional grounds is obtained in the absence of instruments in the 

presence of one or more confounders. 
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For instance the RB methodology may suggest that a large selection effect is required to 

negate a PSM treatment estimate; whereas our method for the same data might indicate 

unobserved bias is a significant factor (the CIA is rejected). Such findings (or other 

variations) are not inconsistent. 

2.2   Heckit estimation of the Rosenbaum model 

As described below, the premise of our method is that we can estimate selection terms from 

the full sample, match on covariates in the full sample and then employ the selection terms 

for matched pairs when estimating the ATT. Importantly, this is consistent with the standard 

matching framework (Rubin 1973, 1979; Ho et al, 2007; Rubin and Thomas, 2000).   

The Heckit model for an endogenous treatment variable (Greene, 2006) applicable to 

the Rosenbaum additive treatment model is: 

 

                  Outcome equation  Yi   = Di +(Xi) + ε1i   i=1, .. ,N                        (3) 

                  Selection equation      Di*= Zi + ε2i             i=1, .. ,N                        (4) 

 

                           D=1 when D*>0, D=0 when D*0                        

                        
2

1 1 12

2 12

0
. . . ,

0 1
N I D

  

 

     
    
      

                                        (5) 

 

where X and Z are vectors of regressors.  

 

This specification gives the following two step model. 

                               

                                     Yi = Di +(Xi) + 12i+i                  i=1, .. ,N                          (6) 

 

                
1 0

( ) ( )
 if =1 and   if =0

( ) 1 ( )

i i
i i i i i

i i

Z θ Z θ
D D

Z θ Z θ

 
     

 
                                    (7) 

 

where  and  are the normal density and distribution functions. 

 

With exact matching, where Xk1=Xk0 and Zk1=Zk0, the standard two-step specification in 

(6) and (7) for matched pairs can be reformulated as: 

 

                                   Y =Y1 - Y0 =   + 12+                                                          (8) 

 

       1 0

( ) ( ) ( )

( ) 1 ( ) ( )[1 ( )]
     

   

  
   

m m m m m m

m m m m m m m m

Z Z Z

Z Z Z Z

     
  

   
                         (9) 

 

Equation 8 can be estimated as a simple regression model. However, due to the 

dimensionality problem, exact covariate matching would be highly unusual in economic and 

other studies; with PSM employed to circumvent this problem. Furthermore, due to imperfect  
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matching with PSM, it is accepted practice to implement parametric adjustments to PSM 

treatment effects by including the covariates in standard regression models in the matched 

samples to estimate the ATT, though to date without controlling for bias via S1 (see Ho et 

al., 2007 for a detailed discussion).  

Importantly, Rubin (1973; 1979) demonstrates that, where a linear approximation to 

(Xi) is used, adjustments of   derived from paired covariate difference regression models 

for matched samples exhibit less observed bias than standard matched estimates; or those for 

OLS models applied to matched (but not differenced) samples. More recently, employing 

PSM and applying covariate difference linear regression adjustments to control for remaining 

bias in the matched samples, Rubin and Thomas (2000) confirm Rubin’s earlier (1973; 1979) 

research. They conclude (p. 581) that ‘the superior performance of regression adjustments 

applied to matched samples is consistent with previous theoretical and simulation studies’.  

Applying Rubin’s methodology, the difference in outcomes for PSM matched pairs is: 

                  Ym =Y1m-Y0m =   + (X1m-X0m) + 12(1m-0m) + m     m             (10)  

where the s are the inverse Mills ratios (IMR) in (4), obtained from a probit model for the 

unmatched sample but applied to the matched sample. Hence, our proposed method is to add 

the term 12(1m-0m) to the Rubin matched difference model, producing a sequence of nested 

models. If 12=0 (the CIA holds), the model reduces to a PSM model incorporating 

differences in X to adjust for possible matching imperfection as per Rubin (1973; 1979). If 

=0 and 12=0, then the regression gives the familiar (standard) PSM estimate. 

Heckit estimation often suffers from multicollinearity between  and the covariates. As 

well as the advantage of estimating treatment effects in the common support, our proposed 

matched form offers a further potential benefit. With perfect covariate matching, then: 

 

                                       

( )

( )[1 ( )]

m
m

m m

Z θ

Z θ Z θ


 

 
                                                      (11) 

                                                  

                                                                    

Figure 1 shows that m has a U-shaped function with a minimum at zero. The selection term 

differs markedly from its traditional shape even if Z1mZ0m. This may result in more robust 

identification than the standard model in the absence of an instrument; and is worthy of 

further investigation in future research (Section 4). Another practical benefit is that the 
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regressors are less likely to be correlated with the selection term (see below) when the 

equation is estimated in differences rather than levels. 

 

                                                                Figure 1 

                    Difference in IMR with unit normal variate for perfect matching 

 

        

         3.   Full and part-time pay differential 

 

In this section we use our augmented PSM model
4
 to provide estimates of the pay penalty 

associated with PT work. These estimates are analogous to the unexplained component in the 

Oaxaca-Blinder decomposition (e.g., Oostendorp, 2009). We extend the recent research of 

Manning and Petrongolo (M&P, 2008). Employing LFS data for start of period 2001-2003 

and conventional regression methods, they report a pay gap of about 10%. Importantly, M&P 

highlight the pivotal role of occupation, demonstrating that the pay gap is reduced 

substantially to about 3% after controlling for occupation differences. Using updated LFS 

data and our new proposed methodology, we investigate the bias associated with occupation, 

together with any remaining selection effect. Note that, as with M&P (2008), occupation 

dummies are assumed to be exogenous
5
.  

                                                 
4
 Note that, as in the standard framework of matching and Heckman treatment effect models, our model controls 

for omitted variable bias rather than bias from any heterogeneity (e.g., as per the Roy model). 
5
 Though the occupation controls were found to be key regressors by M&P (2008), as stressed by a Reviewer, 

they are themselves potentially endogenous; with fields of work or occupational tasks being cognisant (e.g., 

Firpo et al., 2011). Although PSM is now employed in a large variety of treatment applications, as noted by the 

Reviewer, it is rooted in programme evaluation. The current empirical study was selected with reference to 

M&P’s important finding regarding occupation. Specifically, it facilitates the illustration of our methodology 

empirically with reference to an important economic issue where there is an ongoing debate about whether a 

variable should be included or omitted. 
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Our models are estimated for log of weekly earnings (Y), with D (FT) = 1 and D (PT) = 

0, based on an original sample of 207,970 observations for 2001-2010. Explanatory variables 

are similar (including instruments) to those employed by M&P. As discussed above, although 

formal identification is achieved via distributional assumptions, we use the same instruments 

as M&P (see Appendix). Following M&P (2008), models are estimated for two groups of 

covariates: base and broad, with the latter including base plus 9 broadly defined occupations. 

Observations are matched by probit using the nearest neighbour method without replacement 

and a fine calliper (0.0001).  

The standard OLS estimates of the pay gap with a dummy variable for FT in our data 

are similar to those reported by M&P and endorse the key role of occupation, with the 

premium reducing markedly from the base estimate of 13.3% to 4.6% for the broad one. 

Table 1 summarises our matching results for the FT wage premium. In the current example, 

the standard PSM estimates (M1) are similar to the OLS ones at 11.9% and 4.0% 

respectively. Also of note, for this data, for both broad and basic, the standard matched 

treatment estimates (M1) are similar to the ones with differenced regressors (M2), at 12.4% 

and 4.6%. Of course, this degree of congruence may not hold for other studies.  

                                                              

                                                                 Table 1   

             Difference in log hourly earnings: regression estimates for matched pairs 

 

Controls 

  M1 

 None 

 M2 

X 

     M3 

X &  

    

Base    

Pay gap 0.119** 0.124** 0.062** 

Selection term 

(p-value) 

    -     - 0.037* 

(0.038) 

 1.517   

    

Broad    

Pay gap 0.040** 0.046** 0.073** 

Selection term 

(p-value) 

   -      - -0.016 

(0.304) 

 1.162   
The reported results are for nearest neighbour matching without 

replacement (calliper = 0.0001). Number of matched pairs is 58,866 

(base) and 53,812 (broad). 

 Indicates Rosenbaum bounds critical value of the odds ratio 

required for unobserved variables to nullify the significance of the 

pay gap (p=0.05).  

∗∗, ∗ Indicates significance at the 1% and 5% levels. 
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The RB critical  parameters for basic (broad) of 1.517 (1.162) indicate that an 

unobserved variable would have to increase the odds of selection into FT by 52% (16%) to 

render the pay gap statistically insignificant at p=0.05 for the standard PSM estimates (M1). 

The decrease in odds associated with the bounds critical parameters correctly reflects the fact 

that the former (1.517) incorporates the impact of occupation as a confounder, whose 

omission inflates the treatment effect, so that a larger confounding affect is required to negate 

the premium. To the unwary, therefore, the large RB critical parameter for the base 

specification may induce overconfidence in the robustness of the treatment estimate to hidden 

bias. By the same token, the critical bounds (=1.162) for the broad specification indicates its 

relative sensitivity to a confounding variable.  

However, as M3 (for X and ) reveals, our test for hidden bias suggests that the CIA 

is rejected for the base specification (, p=0.038), but that it holds (p= 0.304) for the broad 

one which controls for occupation differences.  In either case, the test is shown to have 

utility; though, of course, as described above, the significance of   does not depend on 

either the magnitude of (simulated)  or that of the treatment estimate.  

As noted above, in the standard Heckit framework, considerable scepticism has been 

voiced about the application of selection corrections due to potential multicollinearity 

between the selection terms and the remaining regressors (e.g., Nawata, 1993). In the current 

case, the R
2
s for regressions of the selection term (1m-0m) on the remaining regressors are 

0.007 (0.008) for basic (broad), indicating that there is no collinearity issue regarding the 

identification of the selection terms.
6
 As described above (Figure 1), this finding is worthy of 

further investigation.  

Importantly, the point estimates for the base specification with the selection term (M3) 

indicate that a large part of the pay differential can be explained by a selection effect and that 

the adjusted pay gap estimate (6.2%) is relatively close to the standard (M1) and the adjusted 

(M2, X) matched pay gap estimates (4.0%, 4.6%) for broad when occupation is included. 

Although not perfectly capturing the difference in pay due to the confounding effect of 

occupation in the standard PSM estimates, our differenced model for the base specification 

which controls for bias (M3) provides a more consistent estimate (6.2%) than the 

                                                 
6
 The results are not sensitive to the use of instruments. The selection estimates are -0.011 (0.044) with p-values 

of 0.531 (0.037) for M3 when instruments are excluded for the broad (basic) specifications respectively. The 

R
2
s for the selection terms (1m-0m) on the remaining regressors increase to 0.234 (0.289), but are still far below 

the normal point where multicollinearity would be regarded as a problem. 
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conventional PSM one (11.9%, M1), when compared to the models with occupational 

controls.  

When occupation is included in the model, the results for broad reveal that there is no 

statistically significant selection effect; though the pay gap does increase to 7.3% (M3). 

However, as with standard Heckit estimates, the statistical insignificance of the selection term 

(1m-0m), suggests that the specification without the selection term for broad (M2) is 

appropriate (note also the absence of multicollinearity as described above). Therefore, our 

preferred estimate is 4.6% (from M2) because the differenced covariate controls are jointly 

significant and the CIA is not rejected for this specification. 

4.   Conclusion, limitations and further research   

 

Rosenbaum and Rubin have developed sensitivity analysis for confounding variables and 

matched paired difference regression specifications respectively, with the aim of improving 

the utility and efficacy of PSM causal treatment inferences. Employing standard matching 

and Heckit assumptions, in this paper we formulate a statistical test for the CIA of no hidden 

bias (ignorability) for PSM matched treatment estimates. Drawing on the rationale 

underpinning Rosenbaum bounds, we propose a modification to Rubin’s matched difference 

estimator which nests Heckit model treatment selection terms for propensity score pair-

matched treated and untreated observations, providing a statistical test of whether the CIA 

holds. If not, the differenced Heckit treatment selection term (1m-0m) can be included in 

Rubin’s matched difference estimator to control for unobserved bias.  

We demonstrated the potential utility of the methodology via estimates of the part-time 

pay gap for British women, an important economic and policy issue. Although not perfectly 

capturing the difference in the pay penalty attributable to occupation differences, our test did 

indicate that the CIA was rejected in the specification which omitted occupation as a 

confounder. When gauged against the model with occupation controls, our matched 

differenced model which controlled (adjusted) for this bias gave a more consistent estimate of 

the pay gap than the comparable unadjusted model.  

Despite this, our proposed method has potential limitations. As with the standard 

Heckman control function treatment approach, our model is predicated and estimated under 

standard parametric assumptions. Further simulation research is required to examine the 

asymptotic properties of the estimator and the robustness of treatment estimates to violation 
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of the joint normality assumption/misspecification
7
. Similar research is warranted to 

investigate the reported low degree of correlation between the control variables and the 

selection term - which if found to generalise, would be an attractive feature - together with 

the possibility of improved identification (Figure 1). 

As discussed in Section 1, there is potential to estimate our model with more flexible 

techniques. As described by Wooldridge (2012), a number of semiparametric and 

nonparametric control function methods have been developed for endogenous continuous 

regressors; but he stresses (p. 9) that solutions are ‘much harder’ for endogenous discrete 

variables. He then proposes (pp. 21-28) a number of more flexible estimators which relax 

parametric assumptions for discrete cases. In addition, the research of Newey et al. (1990) 

demonstrates how semiparametric methods can be employed to estimate sample selection 

models. Further research is warranted to investigate the feasibility of employing these 

methods to estimate our model under less restrictive assumptions. 

 

 

Appendix: Variables 

Outcome variable: real hourly gross pay in constant 2009 prices. 

Treatment variable: binary; 1(0) = full-time (part-time). 

 

Base covariates 

Education (6 qualification levels), age (8 groups), white or non-white, region (12 standard   

regions), married/cohabiting dummy, job tenure (5 dummies), dummy for employer size, 

industry (9 groups), dummies for year and month. 

 

Broad covariates  

Base plus dummies for: Managers and senior officials; professional occupations; associate 

professional and technical; administrative and secretarial; skilled trades occupations; personal 

service occupations; sales and customer service occupations; process, plant and machine 

operatives; and elementary occupations (one digit SOC, 2000). 

 

Instruments (excluded from regressions) 

Dummies for child aged under 2, 2-4 and 5-15; and number of children aged less than 19. 

                                                                                                       

     

                                                      

 
 

 

                                                 
7
 As stressed by a Reviewer, it is important that the methodology specified in this paper is subject to further 

investigation; particularly with regard to the finite properties of the model and its robustness to misspecification 

of the IMRs.  
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