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1 Introduction
Ever since the pioneering work of Owen (1988, 1990), there has been a proliferation of literature on empirical
likelihood (EL), which is a powerful nonparametric statistical tool. An advantage of this method is that one
does not need to assume anything about the underlying distribution of the data. The EL ratio is entirely
data driven. The main focus of Owen (1988) was to construct confidence intervals for a population mean
given a single sample of independent and identically distributed (iid) observations. For a detailed overview
of EL, see Owen (2001).

EL methods for complex surveys are yet to be investigated to their full extent. Chen and Sitter (1999)
and Zhong and Rao (2000) were among the first to consider EL in the context of complex survey designs.
Complex survey designs pose additional difficulties for the conventional EL approach. Asymptotic results
from conventional EL are not directly applicable to complex surveys as special types of constraints may need
to be imposed, depending on the survey design. Generally, the EL ratio in such cases will not have the same
calibration as in the case of simple random sampling. Also, existing computational procedures may not be
readily applicable. To alleviate such problems, Fu et al. (2008) introduced a weighted empirical likelihood
method and developed an unified approach for making inferences on population means in the presence of
multiple samples. One of the cases they consider is stratified random sampling where the focal point of
interest is on the overall population mean. Their approach relies on the augmentation of the special types
of constraints induced by stratified samples.

Though a large body of literature exists regarding inference on population means, quantiles have received
relatively less attention. This is especially true in the case of complex survey designs. Such designs could
conceivably give rise to multiple distribution functions (as is the case with stratified random sampling)
instead of just one. Thus, deriving asymptotic expressions for quantiles can get quite tedious and sometimes
may not even be possible. For simple random sampling, (Owen, 2001, Ch. 3.6) provides a good introduction
to EL methods for quantiles.

The promising results of Fu et al. (2008) warrant further research into the weighted empirical likelihood
approach. Drawing upon their work, we propose a weighted empirical likelihood-based inference method for
quantiles under stratified random sampling. Our results rely on very similar asymptotic expansions.

The rest of this article is organized as follows. In Section 2, we introduce our proposed methodology and
establish some asymptotic results under stratified random sampling. In Section 3, we present a Monte Carlo
study which assesses the accuracy of the confidence interval obtained from our method. Section 4 concludes.

2 Inference for a quantile
Suppose that a population is divided into k mutually exclusive strata of known sizes N1, ..., Nk. The weight
associated with the ith stratum is wi = Ni/N , where N =

∑k
i=1 Ni is the overall population size. Let

{Yij , j = 1, ..., ni}, i = 1, ..., k, be k independent samples of size ni extracted from the strata and let n =∑k
i=1 ni be the pooled sample size. Assume the strata sampling fraction ni/Ni is negligible so that {Yij , j =

1, ..., ni} is regarded as an iid sample generated by the continuous random variable Yi with distribution
function Fi. The overall distribution function is then given by F (y) =

∑k
i=1 wiFi(y). Let Qα denote the

α-quantile of F . This quantile is implicitly characterized by F (Qα) = α. Our focal point of interest is on
constructing confidence intervals for Qα given α.

The weighted empirical log-likelihood (WEL) function of Fu et al. (2008) is given by

lw(F1, ..., Fk) =
k∑
i=1

wi
ni

ni∑
j=1

log(pij), (1)

where pij is the probability associated with Yij . The formulation of (1) was motivated using the argument
of Chen and Sitter (1999). See Fu et al. (2008) for more on this.

An advantage of using the WEL function is that the usual large sample properties of EL can be established
under the special type of constraints induced by stratified samples. If the constraints are reformulated in a
suitable way, computational procedures are also readily available.
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To construct a confidence interval for Qα, we maximize (1) subject to pij > 0 and

ni∑
j=1

pij = 1, i = 1, ..., k, (2)

k∑
i=1

wi

ni∑
j=1

pij1Yij≤Qα = α, (3)

where 1(·) is an indicator function which evaluates to one if the argument (·) is true, and zero otherwise.
Constraint (3) identifies the quantile Qα and its use can be justified by arguments similar to (Owen, 2001,
Ch. 3.6). Since Ei(1Yi≤Qα) = Fi(Qα), where Ei denotes the expectation under distribution Fi, constraint
(3) indeed identifies Qα.

To construct confidence intervals for Qα, we require the asymptotic distribution of the WEL ratio which
Fu et al. (2008) defines as

rw(Qα) =
k∑
i=1

wi
ni

ni∑
j=1

log(np̂ij),

where p̂ij given by (7) solve the maximization problem. Assume ni/n → x 6= 0, so that it is unnecessary
to distinguish between O(n−1/2) and O(n−1/2

i ), and between o(n−1/2) and o(n−1/2
i ). The following theorem

establishes the asymptotic distribution of rw(Qα) at Qα = Qα0 .

Theorem 2.1. Suppose {Yij , j = 1, ..., ni} is an iid sample, with finite variance, from Fi, i = 1, ..., k, and
the k samples are independent of each other. If Qα0 is the α-quantile of the overall distribution function F ,
then −2rw(Qα0 )/c d−→ χ2

(1), where the scaling constant c is given by (12).

Proof. Our proof follows very closely the proof of Fu et al. (2008) for stratified sampling. For ease of notation
and without loss of generality, consider k = 3. Constraints (2) and (3) can be reformulated as

3∑
i=1

wi

ni∑
j=1

pij = 1, (4)

3∑
i=1

wi

ni∑
j=1

pijZij = η, (5)

where the vector-valued variables Zij and η are given by

Z1i = (1, 0, 1Y1i≤Qα)′,
Z2i = (0, 1, 1Y2i≤Qα)′,
Z3i = (0, 0, 1Y3i≤Qα)′,

and
η = (w1, w2, α)′.

Equation (5) can be re-written as
3∑
i=1

wi

ni∑
j=1

pijuij = 0, (6)

where uij = Zij − η. The reformulation of constraints (2) and (3) ensure that the probabilities in each
of the stratum sum to unity. The maximization of (1) subject to (4) and (6) can be carried out using the
Lagrange multiplier technique. For a given Qα, it can be shown that the optimized probabilities are

p̂ij(Qα) = 1
ni(1 + λ′uij)

, (7)
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where the vector-valued Lagrange multiplier λ is the solution to
3∑
i=1

wi
ni

ni∑
j=1

uij

1 + λ′uij
= 0. (8)

The above equation can be solved using the algorithm described in Wu (2004). Rewriting the numerator uij
in (8) as uij [(1 + λ′uij)− u′ijλ], equation (8) can be expressed as 3∑

i=1

wi
ni

ni∑
j=1

uiju
′
ij

1 + λ′uij

λ =
3∑
i=1

wi
ni

ni∑
j=1

uij . (9)

Noting that
∑ni
j=1[ni(1 +λ′uij)]−1 = 1, for i = 1, 2, 3, the order of λ is related to the right-hand side of (9),

which can be written as

U =
3∑
i=1

wi
ni

ni∑
j=1

uij =
(

0, 0, F̂ (Qα)− α
)′
, (10)

where (for k = 3) F̂ (Qα) =
∑3
i=1(wi/ni)

∑ni
j=1 1Yij≤Qα . Since α = F (Qα), it immediately follows that

U = Op(n−1/2) (component-wise) when Qα = Qα0 .
LettingD =

∑3
i=1(wi/ni)

∑ni
j=1 uiju

′
ij and noting that it is Op(1), from (9) we have that λ = Op(n−1/2).

The finite variance assumption allows us to have maxij |uij | = op(n1/2) and λ′uij = op(1) uniformly over all
i and j (see Owen, 2001, Ch. 11.1). An asymptotic expression for the Lagrange multiplier is obtained as

λ = D−1U + op(n−1/2). (11)

The WEL ratio function at Qα0 is

rw(Qα0 ) = −
3∑
i=1

wi
ni

ni∑
j=1

log(1 + λ′uij).

Using a second order Taylor expansion on log(·), we obtain the following asymptotic expansion of the WEL
ratio,

−2rw(Qα0 ) = 2
3∑
i=1

wi
ni

ni∑
j=1

log(1 + λ′uij)

= 2
3∑
i=1

wi
ni

ni∑
j=1

log
(
λ′uij −

1
2λ
′uiju

′
ijλ

)
+ op(n−1)

= U ′D−1U + op(n−1)
= d33(F̂ (Qα0 )− α)2 + op(n−1),

where the last step is a consequence of (10) and d33 is the last (third for k = 3) diagonal element of D−1.
If we let

c = d33

3∑
i=1

w2
i

ni − 1Fi(Q
α
0 )(1− Fi(Qα0 )), (12)

it immediately follows that −2rw(Qα0 )/c will have a limiting χ2 distribution with one degree of freedom.

The scaling constant c involves the true distribution function Fi and quantile Qα0 . Replacing Qα0 by its
weighted sample quantile Q̂α = F̂−1(α) and Fi by its empirical counterpart F̂i(Q̂α) = n−1

i

∑ni
j=1 1Yij≤Q̂α

will not affect the limiting distribution of the test statistic.
Under the WEL approach, a 100(1 − ρ)% confidence interval for Qα0 can be constructed as {Qα| −

2rw(Qα)/c < χ2,ρ
(1)}, where χ2,ρ

(1) is the ρ-quantile from the χ2 distribution with one degree of freedom. The
ratio rw(Qα) is computable for any Qα such that Qα is in the convex hull formed by the overall sample. A
bootstrap calibration of the confidence interval is also a possibility. See Fu et al. (2008) for details.
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3 Simulation study
To assess the finite sample performance of our proposed methodology, we now present the results of some
Monte Carlo simulations. As a benchmark, we consider the approach of Woodruff (1952) who basically
suggested constructing confidence intervals for quantiles of complex surveys by inverting the confidence
intervals of the distribution function. Sitter and Wu (2001) found this method to be quite reliable even in
the moderate to extreme tail regions of distributions.

We consider a population divided into three strata with weights 0.50, 0.30, and 0.20. The samples for the
strata are independently generated from three lognormal distribution functions with means and standard
deviations (1.5, 0.3), (2, 0.4), and (2.1, 0.4). We use pooled sample sizes of n = 50, n = 100, n = 200, and
construct 95% confidence intervals for seven different quantiles. For each specification, we conduct 5, 000
simulations. Table 1 reports the simulated coverage probability (CP), lower tail error rates (L), upper tail
error rates (U), and the average length (AL) of the intervals. With the exception of the case where n = 50 and
α = 0.05, both confidence intervals seem to have excellent coverage rates even in the tails of the distribution.
Interestingly, the tail error rates of the WEL interval seem to be much more balanced than Woodruff’s.
In the moderate to extreme tail regions (i.e., α = 0.05, 0.10, 0.90, 0.95), WEL tends to slightly outperform
Woodruff as WEL’s coverage probabilities are closer to the nominal level of 95%. This is not true for all
instances but the “overall picture” gives WEL a slight advantage. The quantiles towards the center of the
distribution do not pose much problems (which is expected). The WEL intervals are roughly on par with
Woodruff’s.

Table 1: Simulated coverage and tail error rates for 95% confidence intervals

(n1, n2, n3) Q0.05 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q0.95

Woodruff Confidence Interval for Quantile Qα
(20, 20, 10) CP 82.94 94.58 95.48 95.52 95.42 96.24 94.86

L 11.34 0.78 1.08 1.52 1.56 1.92 1.02
U 5.72 4.64 3.44 2.96 3.02 1.84 4.12
AL 0.91 1.34 1.28 1.56 2.66 5.30 7.51

(40, 40, 20) CP 93.90 94.72 95.04 95.42 95.12 95.98 96.64
L 0.98 0.68 1.38 1.84 1.96 1.72 1.72
U 5.12 4.60 3.58 2.74 2.92 2.30 1.64
AL 1.01 0.93 0.88 1.10 1.84 3.39 5.85

(80, 80, 40) CP 94.62 94.36 94.92 95.26 94.70 95.60 95.60
L 0.98 1.62 1.74 1.78 2.22 2.06 2.16
U 4.40 4.02 3.34 2.96 3.08 2.34 2.24
AL 0.73 0.62 0.62 0.77 1.28 2.31 3.59

WEL Confidence Interval for Quantile Qα

(20, 20, 10) CP 87.34 94.38 95.56 94.56 94.74 94.50 94.00
L 11.34 3.06 2.38 2.38 2.20 2.52 1.88
U 1.32 2.56 2.06 3.06 3.06 2.98 4.12
AL 1.09 1.30 1.28 1.57 2.65 5.08 7.36

(40, 40, 20) CP 96.08 95.10 94.80 95.18 94.78 95.26 94.88
L 1.84 2.78 2.64 2.32 2.56 1.94 2.18
U 2.08 2.12 2.56 2.50 2.66 2.80 2.94
AL 1.06 0.88 0.87 1.10 1.84 3.37 5.43

(80, 80, 40) CP 94.64 94.78 95.10 95.18 94.48 95.22 94.68
L 3.18 3.04 2.40 2.24 2.56 2.32 2.52
U 2.18 2.18 2.50 2.58 2.96 2.46 2.80
AL 0.66 0.61 0.62 0.77 1.28 2.28 3.44
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4 Conclusion
Following up on the work of Fu et al. (2008), we proposed a weighted empirical likelihood-based inference
method for quantiles in the presence of a stratified random sampling design. Our method is very easy to
implement as computational routines are readily available. Through simulations, we were able to show that
the confidence intervals obtained from our method perform just as well (and slightly better in some cases) as
the popular method of Woodruff (1952). Thus, the WEL approach is a perfectly reliable method of inference
for quantiles arising from stratified random samples.

So far, we have limited ourselves to inferences on a single measure (i.e., one quantile or one mean). But
one may be interested in making simultaneous inference on multiple quantiles or means. The nature of
complex surveys make the asymptotics much more difficult in such cases. Our work along with the work of
Fu et al. (2008) provide partial guidance for future research into inference for a vector of measures.

References
Chen, J. and Sitter, R. R. (1999) “A pseudo empirical likelihood approach to the effective use of auxilary
information in complex surveys” Statistica Sinica 9, 385-406.

Cochran, W. G. (1977) Sampling Techniques, 3rd ed., John Wiley and Sons Inc.

Francisco, C. A. and Fuller, W. A. (1991) “Quantile estimation with a complex suvey design” The Annals
of Statistics 19, 454-469.

Fu, Y., Wang, X. and Wu, C. (2008) “Weighted empirical likelihood inference for multiple samples” Journal
of Statistical Planning and Inference 139, 1462-1473.

Gross, T. (1980) “Median estimation in sample surveys” in Proceedings of Section on Survey Research
Methods, American Statistical Association, 181-184

Owen, A. B. (1988) “Empirical likelihood ratio confidence intervals for a single functional” Biometrika 75,
237-249.

Owen, A. B. (1990) “Empirical likelihood ratio confidence regions” The Annals of Statistics 18, 90-120.

Owen, A. B. (2001) Empirical Likelihood, Chapman and Hall/CRC.

Qin, J. and Lawless, J. (1994) “Empirical likelihood and general estimating equations” The Annals of Statis-
tics 22, 300-325.

Sitter, R. R. and Wu, C. (2001) “A note on Woodruff confidence intervals for quantiles” Statistics & Proba-
bility Letters 52, 353-358

Woodruff, R. (1952) “Confidence intervals for medians and other position measures” Journal of the American
Statistical Association 47, 635-646.

Wu, C. (2004) “Some algorithmic aspects of the empirical likelihood method in survey sampling” Statistica
Sinica 14, 1057-1069.

Wu, C. (2005) “Algorithms and R codes for the pseudo empirical likelihood method in survey sampling”
Survey Methodology 31, 239-243.

Wu, C. and Rao, J. N. K. (2006) “Pseudo-empirical likelihood ratio confidence intervals for complex surveys”
The Canadian Journal of Statistics 34, 359-375.

Zhong, B. and Rao, J. N. K. (2000) “Empirical likelihood inference under stratified random sampling using
auxilary population information” Biometrika 87, 929-938.

2442


