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1. Introduction

Many cooperative activities involve the contribution of money, capital or labor by agents.
Some models can be found in Mas-Colell (1980), Moulin (1987), Lemaire (1991), Izquierdo
and Rafels (2001), or in the complete survey on cost and surplus-sharing problems by
Moulin (2002). In this paper we analyze surplus problems with increasing average returns.
We analyze the problem from the point of view of a cooperative game where the worth
of a coalition is the corresponding surplus obtained. In this context, the proportional
distribution with respect to agents’ initial contributions arises as a natural core-allocation
of the surplus generated.

In Section 2 we introduce the basic model and we provide a necessary and sufficient
condition for which the core of the game shrinks to the proportional distribution. In Sec-
tion 3 we characterize axiomatically the proportional distribution by using three axioms.
Core selection requires that the solution lies in the core of the cooperative game. Core
invariance means that two IRS problems with the same core deserve the same solution.
Resource monotonicity requires that if an agent increases his/her initial contribution the
payoff to this player should increase, while the payoff to the rest of agents should not
decrease.

We end Section 3 by introducing the proportional nucleolus and comparing it with the
proportional distribution . The proportional rule tries to balance and equalize individual
average payoffs. The proportional nucleolus is also a core selection rule but tries to balance
average revenues of coalitions with respect to their contributions rather than individual
average revenues of players. In general, the two approaches differ and we provide a
sufficient condition for the coincidence of the proportional solution and the proportional
nucleolus.

2. The basic model and the core

Let N = {1, 2, . . . , n} be a set of agents (players) that are engaged in a joint activity.
We denote by ωi > 0 the contribution (capital, labor, effort, inputs) of agent i ∈ N and by
ω = (ω1, ω2, . . . , ωn) the vector of contributions. For all S ⊆ N , we write ω(S) =

∑
i∈S ωi

and ω(∅) = 0. There is a function f : R+ → R+ that represents the technology that
transforms z units of input into f(z) units of output, with the following assumptions:

(a) f(0) = 0 and f(
∑n

i=1 ωi) > 0

(b) for any 0 < z1 ≤ z2 then
f(z1)

z1
≤ f(z2)

z2
.

(1)

Condition (b) shows that the function f exhibits increasing returns to scale (IRS) and
so that agents have incentive to cooperate. The problem at issue is then to divide the
total surplus. We call a problem arising from this situation an IRS problem and we denote
it by (N, f, ω).

To analyze an IRS problem we associate to it a cooperative game. A cooperative game
is a function v that assigns to each subcoalition of agents S ⊆ N the surplus generated
v(S) ∈ R+, where v(∅) = 0. We name v(S) as the worth of coalition S ⊆ N . Given an
IRS problem (N, f, ω) the worth of a coalition S ⊆ N is obtained as follows:

vf,ω(S) = f(
∑
i∈S

ωi), for all S ⊆ N.
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Condition (b) above implies that for all pair of coalitions S and T :

if
∑
i∈S

ωi ≤
∑
i∈T

ωi then
vf,ω(S)

ω(S)
≤ vf,ω(T )

ω(T )
. (2)

We call a game that arises from this situation to be a game with increasing returns to
scale or IRS game and we denote it by (N, vf,ω). We denote the class of all IRS games
with player set N by IRGN . Different types of games formally fit this model: bankruptcy
games (Aumann and Maschler, 1982), interpreting claims as contributions; clan games
(Potters et al., 1989) or simple games with veto power, assigning equal and strictly positive
contributions to the members with veto power and, extending the model, assigning zero
contribution to the rest of players; or convex measured games generated from a convex
function f (Shapley, 1971). Moreover, IRS games are a subclass of average monotonic
games (Izquierdo and Rafels, 2001).

It is easy to see that any game with increasing returns to scale is superadditive. Let
S, T ⊆ N , S ∩ T = ∅, then

vf,ω(S) + vf,ω(T ) =
vf,ω(S)

ω(S)
· ω(S) +

vf,ω(T )

ω(T )
· ω(T )

≤ vf,ω(S ∪ T )

ω(S ∪ T )
· ω(S) +

vf,ω(S ∪ T )

ω(S ∪ T )
· ω(T ) = vf,ω(S ∪ T ).

An efficient distribution of the worth of the grand coalition v(N) is a vector x = (xi)i∈N
where xi is the payoff of agent i ∈ N such that

∑
i∈N xi = v(N). In the sequel and for all

S ⊆ N , we write x(S) =
∑

i∈S xi. The set of imputations of a cooperative game v with
player set N is defined as

I(v) = {x ∈ RN | xi ≥ v({i}), for all i ∈ N, and x(N) = v(N)},
while its corresponding core is defined as

C(v) = {x ∈ RN | x(S) ≥ v(S), for all S ⊆ N, and x(N) = v(N)}.

The core of an IRS game is always non-empty. The proportional rule P (N, f, ω) =
(pi)i∈N arises as a natural candidate to be a solution of the problem, where

pi =
f(ω(N))

ω(N)
· ωi =

vf,ω(N)

ω(N)
· ωi, for all i = 1, 2, . . . , n.

The proportional solution is obviously efficient and it can be easily checked that sat-
isfies all core inequalities. This is, for all S ⊆ N , we have

p(S) =
vf,ω(N)

ω(N)
· ω(S) ≥ vf,ω(S)

ω(S)
· ω(S) = vf,ω(S),

where the inequality follows from (2). In general the core of an IRS game is quite large.
The following lemma shows that the marginal contribution of an agent is always attainable
within the core of the game.

Lemma 1 Let (N, vf,ω) be an IRS game. Then, for every i ∈ N there exists x ∈ C(vf,ω)
such that xi = vf,ω(N)− vf,ω(N \ {i}).
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Proof. Take x ∈ RN defined as xi = vf,ω(N)− vf,ω(N \ {i}) and xk = ωk ·
vf,ω(N \ {i})
ω(N \ {i})

,

for all k ∈ N \ {i}. It is easy to see that x(N) = vf,ω(N). Moreover, by (2), we have that

for any S ⊆ N , i 6∈ S, x(S) = ω(S) · vf,ω(N \ {i})
ω(N \ {i})

≥ ω(S) · vf,ω(S)

ω(S)
= vf,ω(S). On the

other hand, if i ∈ S we have

x(S) = xi + x(S \ {i}) = vf,ω(N)− vf,ω(N \ {i}) +
vf,ω(N \ {i})
ω(N \ {i})

· ω(S \ {i})

= vf,ω(N)− vf,ω(N \ {i})
ω(N \ {i})

· ω(N \ {i}) +
vf,ω(N \ {i})
ω(N \ {i})

· ω(S \ {i})

= vf,ω(N)− vf,ω(N \ {i})
ω(N \ {i})

· ω(N \ S)

=
vf,ω(N)

ω(N)
· ω(N)− vf,ω(N \ {i})

ω(N \ {i})
· ω(N \ S)

≥ vf,ω(N)

ω(N)
· ω(N)− vf,ω(N)

ω(N)
· ω(N \ S) =

vf,ω(N)

ω(N)
· ω(S) ≥ vf,ω(S).

�

Using the above Lemma we show that the core of an IRS game shrinks to a single
point (and so to the proportional solution) if the average return of the grand coalition
and of coalitions of n− 1 agents are all equal.

Proposition 1 Let (N, vf,ω) be an IRS game. Then

C(vf,ω) = {P (N, f, ω)} if and only if
vf,ω(N)

ω(N)
=
vf,ω(N \ {i})
ω(N \ {i})

, for all i ∈ N.

Proof. (⇒) By Lemma 1, for any agent i ∈ N the marginal contribution is attainable
within the core. Since the core consists only in the proportional distribution, this marginal
contribution is attained at this point and so, for any i ∈ N

vf,ω(N)

ω(N)
·ωi = vf,ω(N)−vf,ω(N \{i}) =

vf,ω(N)

ω(N)
·ωi+[

vf,ω(N)

ω(N)
− vf,ω(N \ {i})

ω(N \ {i})
]·ω(N \{i}),

which implies
vf,ω(N)

ω(N)
=
vf,ω(N \ {i})
ω(N \ {i})

.

(⇐) It is well-known that for a cooperative game with a non-empty core, if the vector
assigning each agent his marginal contribution is efficient, then the core of the game
contains a single point. Hence, take x = (vf,ω(N)− vf,ω(N \ {i}))i∈N and notice that

x =
(

vf,ω(N)

ω(N)
· ωi

)
i∈N

= P (N, f, ω). Since the proportional distribution is an efficient

vector we are done. �

Notice that the condition that guarantees the proportional distribution is the unique

core element says that no agent is essential to obtain the higher average return
vf,ω(N)

ω(N)
.
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3. An axiomatization of the proportional solution

Proposition 1 shows that the core of an IRS game might narrow quickly if the average
return of coalitions of n and n− 1 agents are getting closer. This situation might happen
when agents increase their contribution and average returns are stagnated beyond some
contribution threshold. In this case the proportional solution arises as the unique rule that
makes compatible to select a core allocation and weakly increases the payoff to players
when contributions increase.

Next we introduce three axioms that characterize the proportional rule. The first one
states that the rule picks out an allocation from the core of the associated game (Core
selection). The second one states that if the core of the game remains unchanged when we
modify the function f (the technology) while contributions stay the same then solution will
not change (Core invariance). Finally, Resource monotonicity requires that an increasing
of the contribution by some player should benefit this player while not harming the rest
of players.

The rationale for adoption of these axioms might read as follows. Regarding Core
selection notice that the core of this kind of problems is always non-empty and then it
represents the unique set of imputations of the game that are not dominated in the sense
of von Neumann and Morgenstern1. Moreover, core allocations of an IRS game are the
unique payoff distributions that are robust in front of objections and counter-objections
in the sense of Davis-Maschler (Davis and Maschler, 1963) and in the sense of Mas-Colell
(Mas-Colell, 1989). In other words, any allocation not in the core of the game can be
objected without any possible counter-objection. This is a direct consequence of the fact
that any IRS game is an average monotonic game (Izquierdo and Rafels, 2001). All these
arguments lead us to focus on core allocations and discard imputations not in the core of
the game. Concerning Core invariance, the contributions of players determine an initial
status quo among agents. On the other hand, as we have argued before, players choose
among core elements which can be viewed as the set of alternatives in this decision prob-
lem. If the same set of agents faces two IRS problems with the same initial contributions
and the same set of alternatives there is no reason to discriminate between the final so-
lution in both problems, and this is what Core invariance says. Finally, we respect to
Resource monotonicity, the axiom enhances the robustness of an allocation rule in front
of variations of the input contributed: if all players benefit from an increasing of the con-
tribution of some player, any agent has no justification to block higher investment levels
and all players have incentives to contribute more.

A allocation rule α on the domain of IRS problems is a rule that assigns to every IRS
problem (N, f, ω) a unique payoff vector α(N, f, ω) ∈ RN .

Axiom 1 Core selection A solution α is a core selection if, for all IRS problem (N, f, ω)
it holds

α(N, f, ω) ∈ C(vf,ω).

Axiom 2 Core invariance A solution α is core invariant if for all pair of IRS problems
(N, f, ω) and (N, f ′, ω) with the same initial contribution vector ω, it holds that

if C(vf,ω) = C(vf ′,ω), then α(N, f, ω) = α(N, f ′, ω).

1An imputation x of a game (N, v) dominates another imputation y if there exists a coalition S ⊆ N ,
S 6= ∅, N , such that xi > yi, for all i ∈ S and x(S) ≤ v(S).
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Axiom 3 Resource monotonicity A solution α is resource monotonic if for every pair
of contribution vectors ω ∈ RN

++ and ω′ ∈ RN
++ such that ω′i > ωi, for some player i ∈ N ,

and ω′j = ωj, otherwise, it holds

αj(N, f, ω
′) ≥ αj(N, f, ω), for all j ∈ N, j 6= i and αi(N, f, ω

′) > αi(N, f, ω).

Next theorem states that the only solution that satisfies the three aforementioned
axioms is the proportional distribution.

Theorem 1 The proportional solution P (N, f, ω) is the unique allocation rule on the
domain of IRS problems that satisfies Core selection, Resource monotonicity and Core
invariance.

Proof. Clearly the proportional solution satisfies the three axioms. Let α be a solution
satisfying the three axioms and let (N, f, ω) be an arbitrary IRS problem. Then, let us

define the following function f ′: f ′(z) = f(z), if z ≤ ω(N) and f ′(z) =
f(ω(N))

ω(N)
· z,

for all z > ω(N). Clearly f ′ satisfies (1). Moreover, let i ∈ N be an arbitrary agent
and define now ω′ ∈ RN

++ as ω′i = ω(N) > ωi and ω′j = ωj, for all j 6= i. By Axiom 3,
αi(N, f

′, ω) < αi(N, f
′, ω′) and αj(N, f

′, ω) ≤ αj(N, f
′, ω′), for all j 6= i. Then, we have

that for all j ∈ N , j 6= i

αj(N, f
′, ω) ≤ αj(N, f

′, ω′) ≤ vf ′,ω′(N)− vf ′,ω′(N \ {j})

= ω′j ·
vf ′,ω′(N)

ω′(N)
= ωj ·

vf,ω(N)

ω(N)
= Pj(N, f, ω),

(3)

where the first inequality follows from Axiom 3 and the second one from Axiom 1. Taking
now i′ ∈ N , i′ 6= i and repeating the same argument, we can also deduce that

αi(N, f
′, ω) ≤ Pi(N, f, ω). (4)

Since α is a core selection it is efficient. Hence, by (3) and (4), α(N, f ′, ω) = P (N, f, ω).
Finally, by Axiom 2, and since C(vf,ω) = C(vf ′,ω), we conclude α(N, f, ω) = α(N, f ′, ω) =
P (N, f, ω) and we are done. �

Next we show that no axiom in our characterization is implied by the others. To this
end we introduce several solutions satisfying all axioms but one

Example 1 The egalitarian solution E(N, f, ω) =

(
f(ω(N))

n

)
i∈N

satisfies Resource

monotonicity and Core invariance, but it is not a core selection as the next numerical
example shows.

Consider a three-agent problem where ω = (ω1, ω2, ω3) = (10, 20, 20) and f(z) =
2z if z ≥ 30 and f(z) = z if 0 < z < 30. By Theorem 1 the core of the associated
game (N, vf,ω) shrinks to the proportional distribution C(N, vf,ω) = {(20, 40, 40)}, but
E(N, f, ω) = (100

3
, 100

3
, 100

3
).
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Example 2 The equal marginal solution (EM) is defined as EM(N, f, ω) =

∑n
k=1 x

k

n
,

where for each k = 1, . . . , n we have xk =
(
xki
)
i∈N ∈ RN with xkk = vf,ω(N)−vf,ω(N \{k})

and xki =
vf,ω(N \ {k})
ω(N \ {k})

· ωi, for all i 6= k ∈ N .

This rule satisfies Core selection since every vector xk, k ∈ N , is a core element (see
Lemma 1). It also satisfies Core invariance, since if C(vf,ω) = C(vf ′,ω), we have that
vf,ω(N) = vf ′,ω(N) and vf,ω(N \ {k}) = vf ′,ω(N \ {k}), for all k ∈ N , where this last
equality holds since the worth of any coalition of n − 1 agents is attainable within the
core (see Lemma 1). However, it does not satisfy Resource monotonicity as next example
shows.

Consider a three-agent problem where ω = (ω1, ω2, ω3) = (10, 20, 20) and f(z) = 2z
if z ≥ 40 and f(z) = z if 0 < z < 40. The equal marginal solution for this problem is
EM(N, f, ω) = (40

3
, 130

3
, 130

3
). However if agent 1 increases his contribution up to ω′1 = 20,

while ω′2 = 20 and ω′3 = 20, we have EM(N, f, ω′) = (40, 40, 40) but the payoff to agents
2 and 3 has decreased.

Example 3 Consider the rule α defined as α(N, f, ω) = EM(N, f, ω), if f satisfies that

f(x+ z)− f(x) ≤ f(y + z)− f(y), for all 0 ≤ x < y and all z ≥ 0 (5)

while α(N, f, ω) = P (N, f, ω), otherwise. This rule satisfies Core selection since both the
proportional and the equal marginal rules are core selection rules. As we have commented
before, the proportional rule is resource monotonic and so is the equal marginal solution
if f satisfies condition (5). To check it take ω and ω′ such that (w.l.o.g.) ω′1 > ω1 and
ω′i = ωi, for all i ∈ N , i 6= 1. Notice that

EM1(N, f, ω
′) =

1

n

[
vf,ω′(N)− vf,ω′(N \ {1}) +

∑
k 6=1

vf,ω′(N \ {k})
ω′(N \ {k})

· ω′1
]

>
1

n

[
vf,ω(N)− vf,ω(N \ {1}) +

∑
k 6=1

vf,ω(N \ {k})
ω(N \ {k})

· ω1

]
= EM1(N, f, ω),

where the strict inequality follows since vf,ω′(N) > vf,ω(N), vf,ω′(N \{1}) = vf,ω(N \{1})

and
vf,ω′(N \ {k})
ω′(N \ {k})

≥ vf,ω(N \ {k})
ω(N \ {k})

, for all k ∈ N , k 6= 1. Now take i ∈ N , i 6= 1. Then,

EMi(N, f, ω
′) =

1

n

[
vf,ω′(N)− vf,ω′(N \ {i}) +

∑
k 6=i

vf,ω′(N \ {k})
ω′(N \ {k})

· ω′i
]

=
1

n

[
f(ω(N) + (ω′1 − ω1))− f(ω(N \ {i}) + (ω′1 − ω1))

+
∑

k 6=i

vf,ω′(N \ {k})
ω′(N \ {k})

· ω′i
]

≥ 1

n

[
f(ω(N))− f(ω(N \ {i})) +

∑
k 6=i

vf,ω(N \ {k})
ω(N \ {k})

· ωi

]
= EMi(N, f, ω),

where the inequality holds by taking in (5) x = ω(N \ {i}), y = ω(N) and z = ω′1 − ω1.
However, the solution it is not Core invariant as it illustrates the three-agent problem
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where ω = (ω1, ω2, ω3) = (50, 50, 100) and f(z) = 1
2
z, if 0 ≤ z < 100, and f(z) = 1.5z −

100, if 100 ≤ z. Since f is convex it satisfies (5) and so α(N, f, ω) = (472
9
, 472

9
, 1055

9
).

Now consider the function f ′ defined as f ′(z) = f(z) if 0 ≤ z < 200 and f ′(z) = z, if
200 ≤ z. The function f ′ does not satisfy (5) and so α(N, f, ω) = (50, 50, 100). However
notice that vf,ω = vf ′,ω and so C(N, vf,ω) = C(N, vf ′,ω).

The proportional solution is a rule that gives a constant reward to each unit con-
tributed. It reflects a normative approach. However, the process of selecting an allo-
cation generates conflicts between coalitions: if a coalition receives a better reward is
because other coalitions reduce their payoff. The nucleolus (Schmeidler, 1969), a solu-
tion that comes from the field of cooperative game theory, tries to equalize the looses of
coalitions whose payoff enter in conflict (looses with respect to their respective worth).
This approach is more in line with a positive point of view where it might be expected
that the bargaining between agents ends by equalizing these looses. To better adapt this
well-known solution to our model we consider not looses but average looses with respect
the units contributed by a coalition. The reason to take this approach is that agents
in this model often argue and bargain based on average revenues rather than on abso-
lute revenues. In this sense the proportional excess reflects the gap between the average
worth and the average payoff assigned to a coalition. This idea of weighting the excesses
of coalitions is not new and has already analyzed by several authors: Wallmeier (1984),
Lemaire (1984) and Derks and Haller (1999). We call the solution that tries to equalize
these average looses as the proportional nucleolus. Let’s formally define this solution.

Given an allocation vector x ∈ I(N, vf,ω) and a coalition ∅ 6= S ⊆ N , S 6= N , the
proportional excess of S at x relative to vf,ω is

vf,ω(S)− x(S)

ω(S)
=
vf,ω(S)

ω(S)
− x(S)

ω(S)
.

As we have commented before, notice that the second expression of the proportional
excess reflects the difference between the average worth of a coalition and its corresponding
average payoff at x.

Given an allocation x ∈ RN , the proportional excess vector of x, Θp(x) is the vector
whose components are the proportional excesses of the 2n − 2 subcoalitions of N(except
N and ∅) ordered in a non-increasing way. This is

Θp(x) =

(
vf,ω(Sk)− x(Sk)

ω(Sk)

)
k=1,...,2n−2

such that Sk ⊆ N , Sk 6= ∅, N , for all k = 1, . . . , 2n − 2, and
vf,ω(Sk)− x(Sk)

ω(Sk)
≥

vf,ω(Sk+1)− x(Sk+1)

ω(Sk+1)
, for all k = 1, . . . , 2n − 3.

The proportional nucleolus2 is defined as the unique allocation ηp(N, vf,ω) = x∗ ∈
I(N, vf,ω) such that

Θp(x∗) ≤Lex Θp(x),

2Given x, y ∈ Rn, we say x <Lex y if there is some 1 ≤ i ≤ n such that xi < yi and xj = yj for
1 ≤ j < i. Also we say x ≤Lex y if x <Lex y or x = y.
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for all x ∈ I(N, vf,ω). Hence, the proportional nucleolus tries to minimize the maximum
proportional excesses. The proportional rule and the proportional nucleolus do not co-
incide in general. However, the normative and the positive approach converge when the
average return of all coalitions of n− 1 agents do coincide.

Proposition 2 Let (N, vf,ω) be an IRS game. If
vf,ω(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {j})
ω(N \ {j})

, for all

i, j ∈ N , then
P (N, f, ω) = ηp(N, vf,ω).

Proof. Let P (N, f, ω) = (pi)i∈N . For all i, j ∈ N , we have

vf,ω(N \ {i})− p(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {i})
ω(N \ {i})

− p(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {j})
ω(N \ {j})

− p(N \ {j})
ω(N \ {j})

=
vf,ω(N \ {j})− p(N \ {j})

ω(N \ {j})
.

Moreover, for all i ∈ N and for all ∅ 6= S ⊆ N , S 6= N it holds that S ⊆ N \ {j}, for
some j ∈ N and

vf,ω(N \ {i})− p(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {j})− p(N \ {j})

ω(N \ {j})
=
vf,ω(N \ {j})
ω(N \ {j})

− p(N \ {j})
ω(N \ {j})

≥ vf,ω(S)

ω(S)
− p(S)

ω(S)
=
vf,ω(S)− p(S)

ω(S)
.

The above inequality shows that the maximum proportional excesses at the propor-
tional allocation are attained at all coalitions of n− 1 agents.

Consider now an imputation x ∈ I(N, vf,ω) different from the proportional allocation
x 6= P (N, f, ω). Since x is efficient, there exists an agent i ∈ N such that xi > pi and so
x(N \ {i}) < p(N \ {i}). At this allocation x the proportional excess of coalition N \ {i}
is

vf,ω(N \ {i})− x(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {i})
ω(N \ {i})

− x(N \ {i})
ω(N \ {i})

>
vf,ω(N \ {i})
ω(N \ {i})

− p(N \ {i})
ω(N \ {i})

=
vf,ω(N \ {i})− p(N \ {i})

ω(N \ {i})
.

This implies that the proportional excess of N \ {i} at x is strictly larger that the
maximum excess at P (N, f, ω). Hence, we conclude that Θp(P (N, f, ω)) <Lex Θp(x), for
all x ∈ I(N, vf,ω), x 6= P (N, f, ω). Therefore, it follows that ηp(N, vf,ω) = P (N, f, ω). �
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