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1. Introdution

Spanning trees of undireted graphs play a major role in the onstrution of networks of

various kind. Apart from the underlying optimization exerise itself, in the last deades

spanning trees have reeived a lot of attention in onnetion with fairness issues. In that

ontext, the overwhelming fous was laid on dividing the ost of a spanning tree of minimum

total ost between a set of agents in a fair manner (among many others, see, e.g., the works

of Bird (1976), Kar (2002), Dutta and Kar (2004), Bergantiños and Vidal-Puga (2007), and

Bogomolnaia and Moulin (2010)).

The task of onstruting a �fair� spanning tree itself, i.e., a tree whih is aeptable to the

whole group of agents, has reeived omparatively little attention, some representatives be-

ing the works of Darmann et al. (2009), Darmann (2013), and Eso�er et al. (2013). Similar

to their works, we also onsider the problem of �nding a �fair� spanning tree from a ompu-

tational perspetive. However, in our ontext, we onsider the situation in whih eah agent

proposes a spei� solution, i.e., spanning tree. The goal is to determine a spanning tree

whih is fair or aeptable in the sense of not di�ering "too muh" from eah of the solutions

proposed by the agents.

In priniple, we are thus onerned with the omputational omplexity involved in the aggre-

gation of a number of spanning trees proposed by the agents into a single spanning tree.

1

In

a di�erent, preferene-based environment, Endriss and Grandi (2012) onsider the problem

of aggregating direted graphs (proposed by agents) into a single graph; instead of fous-

ing on omputational omplexity however, Endriss and Grandi (2012) hoose an axiomati

viewpoint.

The problem we onsider arises in situations in whih a network in the form of a spanning

tree needs to be onstruted (e.g., sewage systems, teleommuniation or power networks and

pipelines of any kind), and the respetive deision makers have, possibly di�ering, opinions

on how the atual network should look like. As an example, onsider the situation in whih

an oil pipeline system should be built, onneting all the ountries involved. Eah of the

ountries, however, (for politial, eonomi or environmental reasons) proposes a di�erent

spei� solution of how the system should onnet the ountries. The task now is to �nd a

solution, i.e., a spanning tree, whih all of the ountries �aept�.

In our framework, we use the following intuitive measure of aeptane: an agent aepts a

spanning tree T , if the number of edges that are in T but not in the spanning tree proposed

by the agent, does not exeed a given upper bound. In this work, we show that it is

omputationally intratable to �nd a tree that is aeptable to all agents. This result adds

to the results of Darmann et al. (2009), where the omputational omplexity of �nding suh

a fair spanning tree is analyzed when agents approve or disapprove of single edges (instead

of proposing a whole spanning tree).

1

This falls into the sope of Computational Soial Choie (for overviews of that area see Endriss (2011)

and Lang (2005)).
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2. Formal framework and problem de�nition

We start with the formal framework of this paper. An undireted graph G = (V,E) onsists
of a �nite set V and a set E of two-element subsets of V . We all the elements of V verties

and the elements of E edges. A yle is a sequene of verties v0, v1, . . . , vn with n ≥ 3 suh

that (i) v0 = vn, (ii) vi 6= vj for (i, j) 6= (0, n), and (iii) {vi−1, vi} ∈ E for 1 ≤ i ≤ n. A

subset T ⊆ E with |T | = |V | − 1 is alled a spanning tree of G, if (V, T ) ontains no yle.

Now, given a graph G = (V,E) and a set A of agents, eah a ∈ A proposes a spanning

tree Ta of G. The goal is to �nd a spanning tree T that minimizes the �distane� to the

agents' proposals. Using the symmetri set di�erene as basis, there are two natural ways of

approahing this problem. The �rst one aims at �nding a spanning tree T whih minimizes

the total distane, i.e., minimizes

∑
a∈A |T \ Ta|. The seond one uses a more egalitarian

approah and looks for a spanning tree T that minimizes the maximum distane, i.e., mini-

mizes maxa∈A |T \ Ta|.
These two di�erent approahes raise the question of the omputational omplexity involved

in eah of the problems. It is not hard to see that the �rst approah redues to the lassial

maximum spanning tree problem and is hene easy to solve. In ontrast, we will show that

the seond approah leads to a problem whih is omputationally di�ult. Before going into

details, that problem is formally de�ned as follows.

De�nition 2.1 (Aeptable-Tree)

GIVEN: Set A of agents, undireted graph G, spanning trees Ta of G for a ∈ A,
k ∈ N.

QUESTION: Is there a spanning tree T of G suh that |T \ Ta| ≤ k for all a ∈ A?

3. Aeptable-Tree is NP-omplete

In this setion, we show that Aeptable-Tree is an NP-omplete problem. We will

prove this by providing a redution from Half 2-Sat, a speial ase of the Minimum 2-
Satisfiability Problem (Min 2-Sat).

De�nition 3.1 (Half 2-Sat)

GIVEN: Set X of variables with |X| = 2n for some n ∈ N, set C of (disjuntive)

lauses over X suh that every lause is made up of exatly two variables.

QUESTION: Is there a truth assignment τ for X that satis�es all lauses of C, suh that

the number of variables set to true under τ is exatly

|X|
2
?

Note that in Half 2-Sat, the lauses onsist of variables and not of literals, i.e., there are

no negated literals in Half 2-Sat. First, we show that Half 2-Sat itself is NP-omplete.

Theorem 3.1 Half 2-Sat is NP-omplete.
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Proof. Clearly, Half 2-Sat is in NP. To show NP-hardness, we provide a redution from

Min 2-Sat. Given a set X ′
of variables, a set C ′

of (disjuntive) lauses made up of exatly

two variables of X ′
, and k ∈ N, Min 2-Sat is the task to deide if there exists a truth

assignment τ ′ setting to true at most k variables of X ′
that satis�es all lauses of C ′

. Min

2-Sat is known to be NP-omplete (see Alimonti et al. (1997)). Note that the problem is

equivalent to deiding if we an satisfy all lauses in C ′
by setting to true exatly k variables2

� we will onsider that formulation of Min 2-Sat in this proof.

Let I ′ = (X ′, C ′, k) be an arbitrary instane of Min 2-Sat. W.l.o.g. we an assume that

|X ′| = 2n for some n ∈ N (otherwise we an add a dummy variable).

If k = n, then I ′
is an instane of Half 2-Sat and there is nothing to show.

(i) Assume k > n. Introdue ℓ = 2k − 2n new variables y1, . . . , yℓ. Consider the instane

I ′′ = (X ′′, C ′, k), where X ′′ = X ′∪{yj|1 ≤ j ≤ ℓ}. Note that |X ′′| = 2n+ ℓ = 2k, and hene

I ′′
is an instane of Half 2-Sat. Clearly, I ′

is a �yes�-instane of Min 2-Sat if and only if

I ′′
is a �yes�-instane of Half 2-Sat.

(ii) Assume k < n. Introdue ℓ = 2n − 2k + 2 new variables y1, . . . , yℓ and the lauses

Di,j := (yi ∨ yj) for 1 ≤ i < j ≤ ℓ. Let D := {Di,j|1 ≤ i < j ≤ ℓ}. As above, let

X ′′ = X ′ ∪ {yj|1 ≤ j ≤ ℓ}. Let C̃ = C ′ ∪ D and k̃ = k + ℓ − 1. Note that Ĩ = (X ′′, C̃, k̃)
is an instane of Half 2-Sat, beause |X ′′| = 2n + ℓ = 4n − 2k + 2 = 2(2n − k + 1) and
k̃ = k + ℓ− 1 = 2n− k + 1.
Next, we show that D an be satis�ed by setting exatly ℓ− 1 variables to true, but annot

be satis�ed by setting less than ℓ− 1 variables to true:

Let τ be the truth assignment de�ned by setting to true exatly the variables y1, y2 . . . , yℓ−1.

It is easy to see that τ is a satisfying truth assignment for D, beause by onstrution every

lause in D ontains one of the variables set to true under τ . On the other hand, if there

are two variables yg, yh, for some 1 ≤ g < h ≤ ℓ, not set to true under a truth assignment

ψ, then the lause Dg,h � whih, by onstrution is ontained in D � is not satis�ed by ψ.
Thus, D an be satis�ed by setting exatly ℓ − 1 variables to true but annot be satis�ed

with setting to true a smaller number of variables. As an immediate onsequene, C ′
an

be satis�ed by setting exatly k variables to true if and only if C̃ an be satis�ed by setting

exatly k̃ = k + (ℓ− 1) variables to true. �

Now, we are ready to prove that deiding if there exists a spanning tree whih is �aeptable�

to all agents is NP-omplete, and thus omputationally di�ult.

Theorem 3.2 Aeptable-Tree is NP-omplete.

Proof. Aeptable-Tree is in NP: Given a erti�ate � i.e., a spanning tree T � it an

be veri�ed in polynomial time, if |T \ Ta| ≤ k holds for all a ∈ A.
To prove NP-hardness, we redue Half 2-Sat to Aeptable-Tree. Given an instane

I = (X,C) of Half 2-Sat, let X = {x1, x2, . . . , x2n} and C = {C1, C2, . . . , Cm} for some

n,m ∈ N. Let, for 1 ≤ j ≤ m, Cj = (xj1 ∨ xj2) with 1 ≤ j1 < j2 ≤ n. From I, we onstrut

2

If we an satisfy the lauses with setting to true exatly k variables, then obviously we an satisfy them

with setting to true at most k variables. If, on the other hand, the lauses an be satis�ed with setting to

true r < k variables, then we an additionally set to true (k− r) arbitrary variables to get a satisfying truth

assignment that sets to true exatly k variables.
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Figure 1: Graph G = (V,E) in instane J of Aeptable-Tree

an instane J of Aeptable-Tree as follows.

First, we de�ne the graph G = (V,E) (see also Fig. 1): we introdue the set of verties

V := {r} ∪ {ut, vt|1 ≤ t ≤ 2n} and, for 1 ≤ t ≤ 2n, the edges ft = {r, vt}, ht = {r, ut},
and xt = {ut, vt} (abusing notation, we identify a variable with an edge of the same label).

Hene, using the shortuts F = {ft|1 ≤ t ≤ 2n} and H = {ht|1 ≤ t ≤ 2n}, we formally

de�ne E := H ∪X ∪ F . Note that |V | = 4n+ 1, whih implies that any spanning tree of G
must ontain exatly |V | − 1 = 4n edges.

Next we introdue the set of agents A = {α, β} ∪ {γj|1 ≤ j ≤ m}. Agent α proposes the

spanning tree Tα = H ∪X of G, and β proposes the spanning tree Tβ = H ∪ F . Finally, for
eah 1 ≤ j ≤ m, agent γj � representing lause Cj � proposes the spanning tree ontaining

edges xj1, xj2 , all edges in F \ {fj1, fj2}, and all edges in H ; that is,

Tγj := H ∪ {xj1} ∪ {xj2} ∪ (F \ {fj1, fj2})

In what follows, we prove that the following laim holds: I = (X,C) is a �yes�-instane of

Half 2-Sat if and only if in instane J of Aeptable-Tree there is a spanning tree T
suh that |T \ Ta| ≤ n for eah a ∈ A.

�⇒�: Let τ be a truth assignment that satis�es all lauses in C and sets to true exatly n
variables of X . Let {xt1 , xt2 , . . . , xtn} be the set of variables set to true under τ . Consider

the spanning tree T of G given by

T := H ∪ {xt1 , xt2 , . . . , xtn} ∪ (F \ {ft1 , ft2 , . . . , ftn})

Note that T ontains exatly n edges of X and n edges of F . Thus,

|T ∩X| = |T ∩ F | = n (1)

We need to hek that |T \Ta| ≤ n holds for eah a ∈ A. Clearly, |T \Tα| = n and |T \Tβ| = n
hold. Now, onsider agent γj for some j ∈ {1, . . . , m}. For alulating |T \ Tγj |, note that

T \ Tγj = [(X ∩ T ) \ (X ∩ Tγj )] ⊎ [(F ∩ T ) \ (F ∩ Tγj )] (2)

beause the edge-set H is ontained in both trees. Rewriting the seond set di�erene in the

above equation yields

(F ∩ T ) \ (F ∩ Tγj ) = (F ∩ T ) \ (F \ {fj1 , fj2}) = {fj1, fj2} ∩ T
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Together with X ∩ Tγj = {xj1 , xj2}, equation (2) hene beomes

T \ Tγj = [(X ∩ T ) \ {xj1 , xj2}] ⊎ [{fj1, fj2} ∩ T ] (3)

Sine τ is a satisfying truth assignment, at least one of the variables {xj1, xj2} that make up

lause Cj is set to true under τ . I.e., at least one of the edges {xj1, xj2} is ontained in T .
We distinguish the following ases.

(i) |{xj1, xj2} ∩ T | = 1: W.l.o.g. let xj1 ∈ T . Hene, xj2 /∈ T . By onstrution of the graph

G and beause of H ⊂ T , this implies fj1 6∈ T and fj2 ∈ T . Thus, {fj1, fj2} ∩ T = {fj2}.
Sine xj1 ∈ T and xj2 /∈ T , with (1) we get |(X ∩T ) \ {xj1, xj2}| = n−1. Equation (3) hene

implies |T \ Tγj | = (n− 1) + 1 = n.

(ii) |{xj1, xj2} ∩ T | = 2: That is, xj1 ∈ T and xj2 ∈ T . Thus, fj1 6∈ T and fj2 6∈ T due to

H ⊂ T . As a onsequene, {fj1, fj2} ∩ T = ∅. In addition, |(X ∩ T ) \ {xj1 , xj2}| = n − 2
beause T ontains exatly n edges of X (stated in (1)). With (3), this yields |T \ Tγj | =
(n− 2) + 0 = n− 2.

Summing up, |T \ Ta| ≤ n holds for eah a ∈ A.

�⇐�: On the other hand, let T ′
be a spanning tree of G with |T ′ \ Ta| ≤ n for eah a ∈ A.

First, we show that this implies the existene of a spanning tree T of G with |T \ Ta| ≤ n
for eah a ∈ A suh that H ⊂ T holds:

If H ⊂ T ′
, there is nothing to show. Assume H 6⊂ T ′

. By onstrution, for eah 1 ≤ t ≤ 2n
suh that ht /∈ T ′

, we must have {xt, ft} ⊂ T ′
. Create T from T ′

by replaing, for eah suh

index t with {xt, ft} ⊂ T , the edge ft with ht. Sine for eah agent a ∈ A, H ⊂ Ta holds,

|T \Ta| ≤ |T ′ \Ta| ≤ n follows. Therewith, there is a spanning tree T of G with |T \Ta| ≤ n
for eah a ∈ A suh that H ⊂ T holds.

Now, onsider the agents in A. Observe that |T \Tα| ≤ n implies |X∩T | ≥ n, and |T \Tβ| ≤ n
implies |F ∩ T | ≥ n. Due to H ⊂ T and the fat that |T | = 4n, this means that

|X ∩ T | = |F ∩ T | = n (4)

holds.

Next, we show that for eah γj, at least one of {xj1 , xj2} is ontained in T . Assume that for

some 1 ≤ j ≤ m, both xj1 6∈ T and xj2 /∈ T hold. Sine T is a spanning tree of G, we an

onlude that fj1 ∈ T and fj2 ∈ T hold. As stated in (4), |X ∩ T | = n. In partiular, with

the fat that xj1 6∈ T and xj2 /∈ T , this means

|(X ∩ T ) \ {xj1 , xj2})| = n (5)

Sine (i) xj1, xj2 are the only edges in X ontained in Tγj , and (ii) fj1 and fj2 are the only

edges in F that are not ontained in Tγj , we get

T \ Tγj = [(X ∩ T ) \ (X ∩ Tγj )] ⊎ [(F ∩ T ) \ (F ∩ Tγj )] = [(X ∩ T ) \ {xj1, xj2})] ⊎ {fj1, fj2}

With (5), |T \ Tγj | = n + 2 follows, whih ontradits our assumption that |T \ Ta| ≤ n is

satis�ed for eah a ∈ A.
Thus, for eah γj, at least one of {xj1 , xj2} is ontained in T . Hene, the truth assignment

ϕ that sets to true exatly the variables in X ∩ T , for eah lause Cj sets to true at least

one of the variables {xj1 , xj2} ontained in the lause. Due to (4), ϕ sets to true exatly n
of the 2n variables in X , whih ompletes the proof. �
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