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1 Introduction

We study the existence and uniqueness of Cournot equilibrium. Our conditions are weaker
than the ones appearing in the literature, at the expense of multiple equilibrium points.
However, we show that among these equilibrium points only one has a positive price. If
we add the requirement that at least one firm produces at a positive cost whenever the
industry aggregate output implies zero market price, then the equilibrium is unique and
the equilibrium price is positive. Moreover, existence and uniqueness of equilibrium with a
positive price is preserved if costs are piecewise differentiable, nondecreasing, and convex with
a finite number of kinks. Let the market inverse demand be given by P (Q) = max{0, P̂ (Q)}.
To show the existence and uniqueness of Cournot equilibrium with positive price, we require
that (i) P̂ (·) is log-concave, strictly decreasing, and twice differentiable, (ii) the cost function

of each firm is nondecreasing and twice differentiable, and (iii) P̂ ′(Q) − c′′j (qj) < 0 for all
industry aggregated output Q and all individual firm’s output qj, where cj(·) is firm j’s cost
function. If in addition, there exists a firm j such that cj(qj) > 0 whenever P (Q) = 0, then
Cournot equilibrium is unique and the market price is positive.

Several other papers have addressed the uniqueness of Cournot equilibrium. We weaken
the assumptions that profits are concave and marginal costs are strictly positive (Szidarovszky
and Yakowitz (1977), Gaudet and Salant (1991), and Van Long and Soubeyran (2000)).
Furthermore, we do not require convex costs as in Szidarovszky and Yakowitz (1977) and
Van Long and Soubeyran (2000). Kolstad and Mathiesen (1987) provide necessary and
sufficient conditions for the existence of a unique Cournot equilibrium. Some of their as-
sumptions, however, are not globally stated and they require certain properties to hold at
all equilibrium points. Their regularity conditions require (i) the Jacobian of the marginal
profits for the firms with positive output to be nonsingular at every equilibrium point, and
(ii) all Cournot equilibria to be non degenerate (that is, firms producing zero at equilibrium,
have marginal costs greater than the equilibrium price).

Our result still holds even if “smooth” requirements on costs are dropped. This observa-
tion is motivated by the conspicuous relevance of non differentiable costs to applied problems.
To the best of our knowledge the only paper addressing the issues of existence and uniqueness
of Cournot equilibrium with non differentiable costs is Szidarovszky and Yakowitz (1982).
They require, however, concavity of the inverse demand. Our result strengths theirs by
allowing more general inverse demands.

2 Setup and Results

Let N = {1, . . . , n} be the set of firms producing a homogeneous good in a market with

inverse demand given by P (Q) = max{0, P̂ (Q)}. For each j ∈ N , let cj(·) be the cost
function of firm j. The profit of firm j when producing qj units of the good is

Πj(q1, . . . , qn) = qjP (Q)− cj(qj). (1)

where Q =
∑n

i=1 qi. Firms are assumed to choose production levels simultaneously and
independently. Given a profile (qi)i∈N of outputs, each firm receives a payoff given by (1).
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We refer to this game as Cournot game and denote it by G. A Cournot equilibrium is a
Nash equilibrium of G.

We make the following assumptions:

Assumption 1. P̂ (·) is a strictly decreasing, twice differentiable log-concave function and
limQ→∞ P (Q) = 0.

Assumption 2. For each j ∈ N , cj(·) is twice differentiable with c′j(q) ≥ 0 for all q ∈ R+.

Assumption 3. For each j ∈ N and (q,Q) ∈ R2
+, P̂ ′(Q)− c′′j (q) < 0.

Remark 1. Under Assumption 1 there exists a unique 0 < Q0 ≤ +∞ such that P̂ (Q0) = 0. As
noted in Amir (1996) the log-concavity assumption relaxes the so called Novshek’s condition,
P ′(Q)−QP ′′(Q) ≤ 0 for all Q ∈ [0, Q0) (Novshek (1985)). Assumption 3 is standard in the
literature and can be interpreted as relaxing the requirement that costs are convex.

Without loss of generality we normalize cj(0) = 0 and assume P (0) > c′j(0) for all j ∈ N .
For instance, if the last inequality does not hold for some firm, then by Assumption 3 this
firm will optimally produce zero.

The following is a useful observation.

Lemma 1. Suppose assumptions 1-3 hold. Then, for each j ∈ N and each profile of outputs
q−j = (q1, . . . , qj−1, qj+1, . . . , qn), the function given by qjP̂ (Q)− cj(qj) is quasiconcave in qj.

Proof. Observe that, under assumptions 1-3,

f(qj) ≡
c′j(qj)− qjP̂

′(Q)

P̂ (Q)

is strictly increasing. Since qjP̂ (Q)− cj(qj) is increasing whenever f(qj) ≤ 1 and decreasing
whenever f(qj) ≥ 1, it follows that it is single-peaked and therefore quasiconcave.

The next proposition is the main result of this paper.

Proposition 1. Suppose assumptions 1-3 hold. Then G has a unique Cournot equilibrium
with positive price.

Before turning to the proof of the above proposition, we illustrate the importance of
Assumption 3 and prove an auxiliary result.

Example 1. Suppose N = {1, 2} and P (Q) = max{0, 10−Q}. Define the strictly decreasing
function f : R+ → R by

f(x) =

{
1 + 4(1− x)2 if x ≤ 1

1− 4(x− 1)2 if x > 1.

Each firm j ∈ N produces qj units of output at cost

c(qj) = 10qj − q2j −
∫ qj

0

f(x) dx.

It can be easily checked that all assumptions, except Assumption 3, hold. Clearly, (q1, q2) =
(1, 1), (q1, q2) = (3/4, 5/4), and (q1, q2) = (5/4, 3/4) are equilibrium points, each of them
associated with a positive price.
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Let Ĝ be the auxiliary Cournot game having P̂ (·) as inverse demand function. The proof
of Proposition 1 relies on

Proposition 2. The game Ĝ has a unique equilibrium q∗ = (q∗i )i∈N and P̂ (Q∗) > 0.

Proof. For each j ∈ N and every (qj, Q) ∈ R2
+, define

Fj(qj, Q) = P̂ (Q) + qjP̂
′(Q)− c′j(qj).

In addition, for each j ∈ N , let

Sj =
{
Q ∈ R+ : ∃qj ≥ 0 such that Fj(qj, Q) = 0

}
.

It can be shown that Sj = [0, Qj] for some Qj ≤ +∞ and that Fj(·, Q) is strictly decreasing
on Sj. It follows that for each Q ∈ Sj the solution to Fj(qj, Q) = 0 is unique. For each
Q ∈ Sj, let qj(Q) denote this solution and put qj(Q) = 0 for Q /∈ Sj. By the Implicit
Function Theorem and assumptions 1-3, qj(Q) is decreasing on Sj and continuous on R+.

Let b =
∑n

i=1 qi(0), and define H : [0, b]→ [0, b] by H(Q) =
∑n

i=1 qi(Q)−Q. Since H(·)
is continuous, strictly decreasing, H(0) = b ≥ 0, and H(b) ≤ 0, there exists Q∗ ∈ [0, b] such
that H(Q∗) = 0. That is,

∑n
i=1 qi(Q

∗) = Q∗. It can be easily checked that qj(Q
∗) satisfies

Fj(qj(Q
∗), Q∗) ≤ 0. Using Lemma 1 we conclude that q∗ =

(
qi(Q

∗)
)
i∈N is an equilibrium of

Ĝ.
To see that the equilibrium is unique, suppose q̃ = (q̃i)i∈N is also an equilibrium and

define the set J = {j ∈ N : q̃j > 0}. For each j ∈ J , Fj(q̃j, Q̃) = 0 and Q̃ ∈ Sj. Therefore,

qj(Q̃) = q̃j. If j /∈ J , q̃j = 0 and Fj(0, Q̃) ≤ 0. Since Fj(·, Q̃) is strictly decreasing,

Fj(qj, Q̃) < 0, for all qj > 0. Thus, Q̃ ≥ Qj and qj(Q̃) = 0 = q̃j. It then follows that, for

each j ∈ N , qj(Q̃) = q̃j and H(Q̃) = 0 = H(Q∗). Since H(·) is strictly decreasing, it must

be Q̃ = Q∗ and q̃j = qj(Q̃) = qj(Q
∗) = q∗j , for each j ∈ N .

One can easily verify that P̂ (Q∗) > 0. This observation concludes the proof of the
proposition.

We can now prove Proposition 1.

Proof of Proposition 1. Let q∗ be the unique equilibrium of Ĝ. Let qj ≥ 0. Suppose first that

qj +
∑

i 6=j q
∗
i ≤ Q0. Since P̂ (Q∗) > 0, Πj(q

∗) = Π̂j(q
∗) ≥ Π̂j(qj, q

∗
−j) = Πj(qj, q

∗
−j). Suppose

next that qj +
∑

i 6=j q
∗
i > Q0. Since Q∗ < Q0, it follows that qj > q∗j and, by Assumption 2,

cj(qj) ≥ cj(q
∗
j ). Thus, Πj(q

∗) ≥ −cj(qj) = Πj(qj, q
∗
−j). That is, q∗ is an equilibrium of the

Cournot game.
Let us next prove uniqueness. Assume q̃ = (q̃i)i∈N is also an equilibrium of G and

P (Q̃) > 0. We will show that q̃ is also an equilibrium of Ĝ. Let qj ≥ 0. Suppose first that

qj +
∑

i 6=j q̃i ≤ Q0. Since P (Q̃) > 0, Π̂j(q̃) = Πj(q̃) ≥ Πj(qj, q̃−j) = Π̂j(qj, q̃−j). Suppose

next that qj +
∑

i 6=j q̃i > Q0. Then qj > q̃j, and cj(qj) ≥ cj(q̃j). Hence, Π̂j(q̃) ≥ Π̂j(qj, q̃−j).

That is, q̃ is an equilibrium of Ĝ. By Proposition 2, q̃ = q∗, and the proof of Proposition 1
is complete.
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Remark 2. The result is intact even if Assumption 2 does not hold for some firms, provided
that for those firms costs are piecewise differentiable, nondecreasing, and convex with a finite
number of kinks.1 (Of course, in this case, Assumption 3 does not hold either.) Let us outline
the proof of this claim. Suppose that, for each j ∈ N , cj(·) satisfies the latter requirements.
Equilibrium existence follows by Novshek (1985). Suppose there are two equilibrium points
with positive price. Starting with firm 1, and proceeding firm by firm, one at a time,
“smooth” the firm’s cost such that assumptions 2 and 3 hold and the firm’s best response is
unchanged at each equilibrium.2 Clearly, at each step the equilibrium points are preserved.
However, after the process terminates, Proposition 1 applies, which leads to a contradiction.
Szidarovszky and Yakowitz (1982) prove uniqueness of Cournot equilibrium allowing for non
differentiable costs. However, the authors require concavity of inverse demand. This remark,
together with Proposition 3 below, relaxes this condition.

As the next result shows, equilibrium uniqueness can be obtained with an additional
assumption.

Proposition 3. Suppose that assumptions 1-3 hold and there exists j ∈ N such that cj(qj) >
0 whenever P (Q) = 0. Then G has a unique equilibrium q∗ and P (Q∗) > 0.

Observe that uniqueness is obtained without the standard assumption that marginal costs
are strictly positive. Also note that the additional assumption is essential. For instance, if
N = {1, 2, 3}, P̂ (Q) = 2 − Q, and cj(qj) = 0 for qj ∈ [0, 1] and cj(qj) = qj − 1 for qj > 1,
then (q∗i )i∈N = (1, 1, 1) is a Cournot equilibrium, but P (Q∗) = 0.

Proof of Proposition 3. Suppose to the contrary that q̃, with P (Q̃) = 0, is an equilibrium of
G. Hence, it must be Πj(q̃) ≥ Πj(0, q̃−j) for each j ∈ N . However, this inequality implies
that, for each j ∈ N , cj(q̃j) ≤ 0, a contradiction.
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