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1 Introduction

Forecasting exchange rates has been a nightmare for economists since the beginning of the

eighties, when the influential paper by Meese and Rogoff (1983) showed that no structural

model was able to beat the simple random walk in terms of predictive accuracy. In the

following ten years, most studies dealing with exchange rate prediction concluded that it

is not possible to improve upon the no-change forecast. The success of the random walk

was challenged in the beginning of the nineties, when MacDonald and Taylor (1993) were

able to outperform the random walk by allowing for cointegration between the nominal

exchange rate and macroeconomic fundamentals. A few years later, Mark (1995) showed

that the unpredictability of exchange rates is mainly a short-term phenomenon, implying

that for time horizons greater than one year, the models considered outperformed the

random walk benchmark by a large margin.

Comparatively few attempts have been made to apply non-linear models to exchange

rate forecasting. In one of the rare contributions, Clements and Smith (1997) investigated

the forecasting performance of self-exciting threshold autoregressive (SETAR) models for

modeling exchange rates. They concluded that non-linear models tend to perform well

when evaluated conditional on the state of nature, but not when the full sample is taken

under consideration. As a generalization of the univariate threshold autoregressive model,

threshold vector autoregressions (TVARs) were introduced by Tsay (1998). Conditional

on the regime, TVARs possess the same features and shortcomings as standard VARs.

Consequently, they also suffer from the well known curse of dimensionality, which trans-

lates into severe overparameterization and weak out-of-sample forecasting performance.

Our contribution to the literature is twofold. First, we extend the Markov-Chain

Monte Carlo (MCMC) algorithm outlined in So and Chen (2003) to the multivariate

threshold case. Second, we solve the curse of dimensionality through the introduction

of Bayesian shrinkage priors. More specifically, we utilize the stochastic search variable

selection prior (SSVS) put forward by George and McCulloch (1993) and the subsequent

developments for VARs by George et al. (2008) to increase the predictive performance of

the TVAR. Our results suggest that it is possible to improve upon simpler, frequentist

models considered in earlier studies. More importantly, the Bayesian TVAR outperforms

the random walk on all time horizons considered. However, the largest improvements can

be found for time horizons greater than one month.

1688



Economics Bulletin, 2014, Vol. 34 No. 3 pp. 1687-1695

2 Data and Methodology

2.1 Data Overview

Our dataset ranges from 1990M07 to 2012M07. The money supply for the home country,

which is the Euro Area (EA), is the logarithm of the M2 monetary base for the EA

and the logarithm of the US M2 monetary base for the United States. The short term

interest rate is the 3-month interbank rate for the US and the EA short term interest

rate is approximated using the German 3-month interbank rate. The logarithm of the

industrial output for the US and Germany is used as proxy for GDP. The expected future

inflation differential is approximated by using the difference between 10-year US treasury

yields and 10-year German Bund yields. Table 1 provides an overview of the dataset

employed with the corresponding Datastream codes.

Table 1: Data Overview

Description Datastream ID Mean St. Dev. Min Max

EUR/USD* exchange rate USEURSP 0.194 0.143 −0.171 0.455
M2 money supply* (EA) EMM1....B 7.689 0.519 6.873 8.508
M2 money supply* (US) USM1....B 7.120 0.230 6.682 7.749
3-month interbank rate (EA) EMINTER3 1.289 0.739 −0.699 2.470
3-month interbank rate (US) USINTER3 1.031 0.986 −1.427 2.148
Industrial Production* (Germany) BDIPTOT.G 4.554 0.095 4.386 4.750
Industrial Production* (US) USIPTOT.G 4.416 0.158 4.099 4.613
10y government bond yields (EA) EMGBOND. 1.697 0.364 1.149 2.410
10y government bond yields (US) USGBOND. 1.706 0.266 0.798 2.185

Note: Asterisks indicate that the variables are entering the model in logarithms. Final model specification takes all the
variables as log country-deviations.

2.2 Threshold VAR

Following Tsay (1998), the TVAR with R regimes is given by

yt =
R∑

r=1

[
(ψr,0 + ψr,1t+

p∑
i=1

Φr,iyt−i + ur,t)× I(zt−k ∈ (γr−1, γr))

]
(1)

where

I(zt−k) = 1⇔ zt−k ∈ (γr−1, γr) (2)

yt is a K × 1 vector of explanatory variables, ur,t ∼ N (0,Σr) denotes the vector of error

terms, Σr is the variance-covariance matrix and Φr,i is the K ×K matrix of coefficients

in regime r = 1, ..., R. ψr,0 and ψr,1 denote the coefficients on the constant and trend in
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each regime, respectively. p determines the number of lags of the endogenous variables.

Note that z ⊆ Z is the threshold variable, where Z is a matrix of possible threshold

variables and γr defines the threshold parameter. In the following discussion we restrict

Z to be a subset of y. Finally, k = 1, .., K determines the lags of the threshold variables.

For the subsequent discussion, it proves to be convenient to work with the regime specific

coefficient vector Πr := (ψ′r,0, ψ
′
r,1, vec(Φr,1)′, ..., vec(Φr,p)

′).

2.3 Priors and Estimation Strategy

Priors on Πr and Σr

The aforementioned problem of overfitting in TVARs is reduced by means of the SSVS

prior, which selects the appropriate degree of shrinkage for the parameters in equation (1).

Conditional on the regime, we assume a mixture normal prior on each VAR coefficient:

Πr,j|δr,j ∼ (1− δr,j)N (0, ω2
r,0j) + δr,jN (0, ω2

r,1j) (3)

where δr,j is a dummy random variable which corresponds to coefficient j in regime r.

It equals one if the coefficient is to be included in the model and zero if it is omitted.

This implies drawing from one of the normal priors in equation (3), where ω2
r,0j is the

prior variance on the coefficient for the first normal, which is set to a value close to zero,

implying an informative prior and effectively shrinking the coefficient towards zero. The

prior variance ω2
r,1j for the second normal prior is set to a large value, leading to an

uninformative prior on coefficient j. The exact specification of the hyperparameters is

done in a default semi-automatic fashion, proposed by George et al. (2008), where the

ω2
r,0j and ω2

r,1j are scaled using the OLS standard deviation of the parameter in question.

The intuition behind the SSVS prior is that, depending on whether δr,j equals zero or

one, a variable is excluded or included in the model. This is done by imposing a dogmatic

prior on Πr,j if δr,j = 0 and a diffuse prior if δr,j = 1. The first case implies that the

corresponding coefficient could be safely regarded as zero, implying that the variable is

not included in the model. Averaging the draws of the δr,j leads to posterior inclusion

probabilities for variable j in regime r.

For the elements of Σr, we impose the following prior structure

[Σr]i,j ∼

G(a1, a2) if i = j

N (0, V ) if i 6= j
(4)

where the hyperparameters a1 and a2 are set to small values such that the prior is rendered
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noninfluental. We specify the prior variance on the off-diagonal elements as V = diag(52),

which again corresponds to a non-informative prior choice.

Priors on γ

For the threshold parameter, we follow the literature on Bayesian threshold autoregres-

sions (Geweke and Terui, 1993; So and Chen, 2003) and use a Normal prior on γr, formally:

γr ∼ N (µ
z
, σz) (5)

where µ
z

and σz denote the prior mean and variance on the threshold, respectively. In

the following application we set the prior mean equal to zero and the variance equal to

10, implying a fairly diffuse prior on the threshold.

MCMC Algorithm

Conditional on the regime, estimation of the model in Equation 1 can be done in a

straightforward fashion by employing the MCMC algorithm outlined in George et al.

(2008). In the following discussion, we restrict the number of regimes in our analysis to

two. Estimation of γr is done by including a random walk Metropolis step in our MCMC

algorithm. The law of motion for γr is given by

γ∗r = γ(a)
r + σse (6)

where γ∗r is the proposed value for γr, γ
(a)
r denotes the last accepted draw and e ∼

N (0, 1). σs is a scaling factor set such that the acceptance rate defined below is between

20 and 40 percent. The draw γ∗r is then evaluated by by comparing the conditional

posterior of p(γ∗r |y,Πr,Σr, δr, k, z) with the posterior at the last accepted draw for γ
(a)
r .

The probability of accepting a draw is

α(γ∗r |γ(a)
r ) = min

( ∏2
r=1 p(y|γ∗r ,Πr,Σr, δr, k, z)p(γ∗r )∏2

r=1 p(y|γ
(a)
r ,Πr,Σr, δr, k, z)p(γ

(a)
r )

, 1

)
(7)

One consequence of this is that γr’s with higher posterior density than the old parameters

will be accepted in any case, whereas draws with lower posterior density will be accepted

with a probability proportional to the ratio of the posterior at γ∗r and γ
(a)
r .

For the lag of the threshold variable k, Chen and Lee (1995) show that p(k|y,Πr,Σr, δr, γr)
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follows a multinomial distribution with a probability vector

p(k = d|y,Π,Σ, δ, γr) =

∏2
r=1 p(y|γr,Πr,Σr, δr, k = d, z)∑dmax

d=1

∏2
r=1 p(y|γr,Πr,Σr, δr, k = d, z)

(8)

This part is easily implemented as an additional step in the Gibbs sampler.

The last ingredient is the specific threshold variable chosen. To account for the uncer-

tainty regarding the threshold variable, we estimate the model for all z ∈ Z and choose

the one which yields the highest marginal likelihood approximated by the Bayesian In-

formation Criterion (BIC).

The model in (1) is estimated in country differences, implying relative deviations of

the corresponding covariates in the system. Furthermore we included four lags for the

explanatory variables in the following analysis, permitting the SSVS prior to select the

most appropriate lag length and shrinking the coefficients on the less important lags

towards zero.

3 Results

We rely on the following forecasting design: As an initial estimation period, 1990M01

to 2010M07 (246 Observations), is used. Then we perform rolling regressions, where

the estimation window is expanded for one period each step, keeping the starting point

(1990M01) fixed. The forecasting period is from 2010M07 to 2012M07 (24 observations).

Our goal is to show that the introduction of Bayesian methods and non-linearities in

the modelling framework tends to exhibit a positive effect on the forecasting accuracy.

Consequently, we benchmark the Bayesian TVAR (B-TVAR) against its linear counter-

parts and the random walk. For the linear counterparts, we have decided to include the

SSVS-BVAR, a simple BVAR with a Minnesota prior and some simple, univariate models

like the autoregressive model and the random walk with drift. In addition, we also show

the results using a frequentist TVAR.

The mean of the predictive density is used as a point estimator for the forecasts.

Comparison is then done using the well known root mean square error (RMSE). Judging

the predictive accuracy by RMSE implies that uncertainty about the point forecasts is

omitted. Thus we also rely on the log predictive likelihood (PL) as a Bayesian standard

measure to compare density forecasts. The log predictive likelihood is defined as

PL :=
T−h∑
t=t0

log [p(et+h = ẽt+h|Dt)] (9)
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where ẽt+h is the actual realization of the exchange rate and Dt denotes the available

information until time t. Higher PLs imply stronger predictive capabilities.

Table 2 presents the results of our forecasting exercise. The values presented are the

RMSEs of the corresponding models relative to the RMSE of the naive benchmark model.

Values in parentheses represent the log-predictive likelihood for each model. M denotes

the BVAR with the Minnesota prior, SSVS is the BVAR with the SSVS prior, B-TVAR

denotes the B-TVAR with the SSVS prior specification and TVAR is the threshold VAR

estimated by maximum likelihood. AR and RWD denote the autoregressive model and

the random walk with drift respectively. The last column shows the absolute RMSE of

the random walk forecast.

Table 2: Relative Performance RMSEi/RMSERW

B-TVAR SSVS M TVAR AR RWD RW

1 M
0.8503 0.9540 0.9050 0.9824 1.0094 1.0019 0.0357

(48.9120) (46.7572) (48.1426) - - - -

3 M
0.8129 0.8724 0.8929 0.9552 0.9482 1.0063 0.0486

(40.5917) (39.6345) (39.0596) - - - -

6 M
0.9323 0.8406 0.8641 0.8801 0.9688 1.0070 0.0498

(38.3456) (41.6703) (41.9071) - - - -

12 M
0.7720 0.8788 0.8652 0.8713 0.8988 1.0190 0.0815

(32.1721) (22.8304) (22.8193) - - - -

Note: The figures refer to the relative RMSE of a model to the random walk RMSE. Log predictive likelihoods
in parentheses. Results based on rolling forecasts over the time period 2010M01-2012M07. M stands for the
Minnesota prior BVAR, SSVS stands for the SSVS prior BVAR, B-TVAR stands for the threshold vector
autoregressive model with SSVS prior specification and TVAR is a standard threshold VAR estimated using
maximum likelihood. AR and RWD refer to the autoregressive model of order one and random walk with
drift respectively. RW is the absolute RMSE of the random walk forecast. Bold figures refer to the lowest
value across models for the log EUR/USD exchange rate.

As can be seen in Table 2, all of the multivariate models considered perform quite well

in the forecasting exercise, beating the random walk on every time horizon considered.

Except for the six step ahead forecasts, the B-TVAR managed to outperform its peers by

a large margin. Especially on the three and twelve month time frames, the performance is

exceptionally strong, improving upon the random walk benchmark by approximately 15

to 23 percent. Comparison of the non-linear models with their linear competitors points

to the fact that non-linearities tend to increase the predictive capabilities of the models

considered, especially on longer time frames. Note that the results above suggest that

even at the critical one-month-ahead horizon, the B-TVAR exhibits exceptional predictive

capabilities, outperforming the random walk by nearly 15 percent. The B-TVAR also

outperforms its frequentist counterpart on most time horizons considered. Especially on

the three- and twelve month time horizons the improvement in terms of RMSE is quite

large, revealing that the SSVS-prior seems to work well in that environment.
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Comparison of the log predictive scores suggests that the models which excel when

judged by means of their point forecasts are also the ones that succeed in the density

forecasting exercise. More specifically, the B-TVAR outperforms its peers on the one,

three- and twelve month time horizons in terms of log predictive scores, which is consistent

with the findings above.

4 Conclusions

This study has shown that the introduction of model uncertainty and non-linearity in the

context of exchange rate forecasting helps to improve upon simpler models considered in

the traditional exchange rate forecasting literature. The SSVS prior allows to account

for model uncertainty in a flexible way. One implication of this prior structure is that

it serves as an automatic model selection device, applying shrinkage on the coefficients

where it is needed. As a consequence of the hierarchical model structure, the required

input from the researcher is minimized.

Our results indicate that it is possible to improve upon the random walk benchmark,

even at the critical one-step-ahead horizon. The B-TVAR with SSVS prior beats all

other models for most time horizons considered, both in terms of the point forecasts and

the predictive densities. Especially the strong performance at the short-time horizons

points towards the fact that it pays of to introduce the notions of model uncertainty and

non-linearity in the modelling framework.
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