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1. Introduction 

 

There is a large and growing literature on the fixed effect panel data analysis in econometrics, 

especially in semiparametric and nonparametric modeling, but very little attention has been paid 

to the nonparametric estimation in dynamic panel models with fixed effects. As Lee (2007) 

points out, one possible explanation for this is the difficult of treating autoregressive structure 

and the individual specific fixed effects simultaneously in the context of semiparametric and 

nonparametric estimation. In this paper, we propose a partially linear varying coefficient 

dynamic panel data model with fixed effect which is an extension and a generalization of Lee’s 

(2007) nonparametric and partially linear fixed effects dynamic panel models. To estimate the 

functional coefficients of the model, we consider a within group type of series estimator and 

derive its convergence rate and its asymptotic normality. Our asymptotic results indicated that 

the within group series estimator is asymptotically biased and we also suggest a bias-corrected 

within group estimator. 

Section 2 of this paper gives the specification of the model and derives the within group series 

estimator. Convergence rate and asymptotic normality of the proposed estimator are examined in 

Section 3. Section 4 concludes the paper. The mathematical proofs are gathered in the Appendix. 

 

2. The Model and Within Group Series Estimation 

 

We consider the following functional partially linear varying coefficient dynamic panel data 

model: 
'

1
( ) ( ) , 1, , ; 1, ,

it it it it i it
y y x z e i n t T    (1) 

where , (.)
it
y  is unknown and  is a specified class function from  to ; 

d
it
x  (excluding a constant), and m

it
z  is a vector of exogenous regressors, i  is 

individual specific effects and it
e  is the usual random errors. We assume that 

1 0
( | , , , , , ) 0
it it i it it i

E e y y x z  and the realization of the initial values 0i
y  are observed. The 

individual specific effects i   is assumed to have finite variance and to be independent of it
u   for 

all i  and t . However, we allow i  to be correlated with 1
,

it it
y x  and it

z   with unknown 

correlation structure. 

Following Lee (2007, 2013), we assume that it
e  is independently identically distributed with 

zero mean, finite variance and possess higher finite moments. It is further assumed that for each 

i , ite  is independent of 
1

{ }
it s s t
y  and it

y  is independent across i . Finally, conditional on i , 

for each i , the process { }ity  in (1) is geometric, stationary and -mixing with exponential 

decay. 

Model (1) includes the fixed effect functional coefficient panel data model of Sun, Carroll and Li 

(2009) when (.) 0 , nonparametric fixed effect of Lee (2013) when (.) 0  and in a special 

case where 1d  and 1
it
x  for all i  and t , it reduces to the nonparametric additive model of 

Baglan (2010). The model is also a generalization of the fixed effects partially linear model of 

Lee (2007) obtain by replacing the parameters in the fixed effect partially linear model with 
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some functions of covariates. Let 
1

.
1

T

i it
t

s T s  denotes the within group sample average of a 

random variable it
s , and let .it it i

s s s . Also, let '( , ) ( )
it it it it

g x z x z , then by employing 

standard within transformation of (1) to eliminate the fixed effect, we obtain: 

' 1 '
1

1

1

( ) ( ) ( )

( ) ( , )

T

it it it it is is it
s

it it it it

y y x z T x z e

y g x z e
     (2) 

where 
1

1 1 1
1

( ) ( ) ( )
T

it it is
s

y y T y  and 
' 1 '

1

( , ) ( ) ( )
T

it it it it is is
s

g x z x z T x z . We define 

the general function ( )
it
w  to be the additive within transformation class of functions  if 

1

1

( ) ( ) ( )
T

it it is
s

w f w T f w , (.)f  is twice differentiable in the interior of its support  

which is a compact subset of  and 2{ ( )}
it

E f w . We will use the series ( )Kp y  of ( 1)K   

dimension to approximate 1
( )
it
y  by '

1 1
( ) ( )K
it it
y p y , a linear combination of  K  known 

base functions, where '
1 1 1 1

( ) [ ( ), , ( )]K
it it K it

p y p y p y  is a ( 1)K  vector of base function, 

and '
1
( , , )

K
 is a ( 1)K  vector of unknown parameters. Similarly, for 1, ,l d , we 

approximate the varying coefficient ( )l it
z  by '( ) ( )l lr r

l it l it l
z q z , a linear combination of lr   

known base functions, where 
'

1
( ) [ ( ), , ( )]l

l

r

l it l it lr it
q z q z q z  is a vector of ( 1)

l
r  vector of base 

function and 
'

1
( , , )l

l

r

l l lr
 is a vector of ( 1)

l
r vector of unknown parameters. Define the 

( 1)R  matrices 

1 ' ' '
,1 1 ,

( , ) [ ( ), , ( ) ]dr rR
it it it it it d d it

q x z x q z x q z   

and 
' '
1 '
1
( , , )dr r

d
, where 

1

d

l
l

R r . Thus, we use a linear combination of R  functions, 

'( , )R
it it

q x z , to approximate '( , ) ( )
it it it it

g x z x z .  

Note that the approximating functions ( )Kp y  and ( , )Rq x z  have the following properties: (a) 

1
1 1 1

1

( ) ( ) ( )
T

K K K
it it is

s

p y p y T p y  and 
1

1

( , ) ( , ) ( , )
T

R R R
it it it it is is

s

q x z q x z T q x z

;  (b) as each of K  and R  grow, respectively, there is a linear combination of  
1

( )K
k it
p y  and 

a linear combination of  ( , )R
r it it
q x z  that can approximate any function in  arbitrarily well in the 

sense of mean square error. Consequently, we can approximate 1
( )
it
y  by '

1 1
( ) ( )K
it it
y p y   

and ( , )it it
g x z   by '( , ) ( , )R

it it it it
g x z q x z  where  

1
( )K
it

p y   and  ( , )R
it it

q x z  are the transformed 

basis functions. Hence we can rewrite (2) as 
' '

1
( ) ( , )K R

it it it it it
y p y q x z       (3)                                                                       
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where ' '
1 1

{ ( ) ( ) } { ( , ) ( , ) }K R R
it it it it it it it it
e y p y g x z q x z . Using matrix notation, 

we define ( 1)nT  vector '
11
( , , )

nT
Y y y , an ( 1)nT  vector '

11
( , , )

nT
, an 

( )nT K  matrix '
10 1

( ( ), , ( ))K K
K nT
P p y p y  and an ( )nT R  matrix 

'
11 11

( ( , ), , ( , ))R R
R nT nT
Q q x z q x z . We also define ( )nT nT  matrices 

' 1 '( )
P nT K K K K
M I P P P P   and  ' 1 '( )

Q nT R R R R
M I Q Q Q Q    assuming that both '( )

K K
P P  and 

'( )
R R
Q Q  are nonsingular matrices for large n  and T . Thus, (3) can be written using vector-

matrix notation as 

K R
Y P Q         (4) 

Let ˆ  and ˆ  denote the least squares estimators of  and  respectively, obtaining by 

regressing Y  on ( , )
K R
P Q  from (4). Using partition inverse results, the estimators ˆ  and ˆ  are 

given by 
' 1 'ˆ ( )

K K Q K K Q
P M P P M Y        (5) 

' 1 'ˆ ( )
R R P R R P
Q M Q Q M Y        (6) 

where we use the subscripts K  and R  to denote that these estimators are dependent of the 

number of approximating functions. We then estimate ( )y  by 'ˆ ˆ( ) ( )K
K

y p y  and ( )l
z  by 

'ˆ ˆ( ) ( )lr

l l R
z q z   for 1, ,l d . 

 

3. Asymptotic Theory 

 

For convenient, let  denote the ( ) ( )K R K R  variance-covariance matrix of 

'
' '

1
( ), ( , )K R
it it it

p y q x z  whose smallest eigenvalue is bounded above zero and the largest 

eigenvalue is bounded for every K  and R . Following Lee (2007), we decompose   as follows 

pp pq

qp qq

  

conformably as 
'

' '
1

( ), ( , )K R
it it it

p y q x z  and '
pq qp

. Thus, the conditional variance of 

1
( )K
it

p y   given ( , )R
it it

q x z  can be defined as 1
|ppq pp pq qq qp

, and likewise, the 

conditional variance of ( , )R
it it

q x z  given 
1

( )K
it

p y  is 1
|qq p qq qp pp pq

. Let 

*
( ) ( ) { ( ) | }K K K
it it it i

p y p y E p y  and 
*
( , ) ( , ) { ( , ) | }R R R
it it it it it it i

q x z q x z E q x z  be the 

demeaned processes of ( )K
it

p y  and ( , )R
it it

q x z  respectively, such that 
*
[ ( )] 0K

it
E p y  and 

*
[ ( , )] 0R

it it
E q x z , for all i  and t . Also, we use " "  to denote convergence in 

distribution. We make the following assumptions: 
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Assumption 1:  { , , , 1, , ; 1, , }
it it it
y x z i n t T  are independent across i  index; ( , )i i

x z  are 

𝑖. 𝑖. 𝑑.  where '
1

( , , )
i i iT
x x x  and '

1
( , , )

i i iT
z z z , and the support of ( , )i i

x z  is compact 

subset of d m . 

Assumption 2:  The error { }ite  is 𝑖. 𝑖. 𝑑. with zero mean, variance 2  and (| | )
it

E e  for 

some 4 , and ite  is independent of i  as well as it
x  and it

z , for all i  and t . Furthermore, 

{ }
it
e  has positive density almost everywhere and an absolutely continuous marginal distribution 

with respect to the Lebesgue measure on . 

Assumption 3: (i) For each i , the Markov process { }ity  has a homogeneous transition 

probability i  and the initial value 
0i
y  is drawn from the invariant distribution i . (ii) 

Conditional on i , for each i , the process { }ity  is geometrically ergodic over t  and hence -

mixing with exponentially decay mixing coefficients ( )
i

 such that 
1 1 4/

1 1

( )
n

i
i

n  

a.s., for some 4 . 

 Assumption 4:   (i) (0) 0  and (ii)
,
lim
n T

n

T
  where 0 . 

Assumption 5:  (i) For every K , there exists positive integers *n  and *T  such that for all 
*n n  and *T T , the ( )nT K  matrix K

P  is of full column rank. (ii) For each K , there 

exists a ( )K K  matrix '
* *
[ ( ) ( ) ]K K

K
E p y p y  such that K  has the smallest eigenvalue 

bounded away from zero and the bounded largest eigenvalue; and in addition, { ( )}Kp y  is fourth 

order stationary with 
'( ) ( ) 9( )K K
i

p y p y dy  for each i .  (iii) ( , )K K n T  is nonrandom 

satisfying K  and 2 / 0K nT   as ,n T . (iv) There exists a constant  satisfying 

*
1 1
sup sup {| ( ) | | }Kk

it i
i n k K

E p y  for some 4 . 

Assumption 6:   (i) For every R , there exists positive integers 
*n  and 

*T  such that for all 
*n n  and *T T , the ( )nT R  matrix 

R
Q  is of full column rank. (ii) For each R , there 

exists  a ( )R R  matrix '
* *
[ ( , ) ( , ) ]R R

R it it it it
E q x z q x z   such that 

R
 has the smallest 

eigenvalue bounded away from zero and the bounded largest eigenvalue. (iii) ( , )
l l
r r n T   is 

nonrandom satisfying 
l
r  as ,n T . (iv) There exists a sequence of nondecreasing 

constant 
0
( ) :R  satisfying 

( , ) 0
sup ( , ) ( )

x z R
Q x z R  for every R  such that 

4 2
0
( ) / 0R R nT  as ,n T   where  is the support of ( , )x z . 

Assumption 7:  (i) There exists a parameter vector K
K

 and a constant 0  such that 

sup ( ) ( ) ( )
cy K K
y P y O K  for every K ; (ii) For 

1
( , ) ( )

d

l ll
g x z x z  there exists a 
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parameter vector 
' '
1 '
1
( , , )dr r

g gR d
 and some constant 0

l
 such that 

( , ) 1
sup ( , ) ( , ) ( )l

d

x z R g ll
g x z Q x z O r . 

Most of the above assumptions are very similar to the ones that are used in Lee (2007) and 

Ahmas et al. (2005), we modify a few of them for the purpose of our analysis. Assumption 1 is 

standard for panel data series estimation. Assumption 2 implies that 
it
e  is independent of 

1
{ }
is s t
y  as well as 

i
  and ( , )

it it
x z . Assumption 3 is a standard condition for a stationary 

Markov chain to be geometrically ergodic. In time series context, a wide class of nonlinear 

autoregressive functions satisfied this assumption. See for example, Chen and Shen (1998), Fan 

and Yao (2003). Assumption 4(i) gives the identification condition for (.) , whilst assumption 

4(ii) says that the time series T  should not be too small compared with n . Assumption 5 and 6 

usually imply that the density of y  and the density of ( , )x z  are each bounded from below by a 

positive constant. Assumption 7 states that there exist some positive constants such that the 

uniform approximation errors to the functions shrink at particular rates. It is known that many 

series function satisfy assumptions 5-7, for example, power series, orthogonal polynomial, 

trigonometric series and splines. Under the above assumptions, we can now state our main 

asymptotic results. 

 

Theorem 3.1: Under Assumptions 1-7, as ,n T  jointly we have 

2 2
22 2 0 0

1

( ) ( )ˆ{ ( ) ( )} ( ) ( )l
c

d

i lly

K K R RK R
E y y dy O K r

nT nT nT nT
  

and for 1, ,l d , let 
z
 denotes the support of 

it
z  ,then 

2 2
22 2 0 0

1

( ) ( )ˆ{ ( ) ( )} ( ) ( )l
z

d

l i llz

K K R RK R
E z z dz O K r

nT nT nT nT
 

where 
i
 is the marginal distribution of 

it
y  and 

it
z . 

 

The proof of Theorem 3.1 is a straightforward extension of Theorem 2 of Lee (2007), and we 

outline the key steps of the proof  in Appendix A. Theorem 3.1 implies that the convergence rate 

of (̂ )y  and ˆ( ) ( 1, , )
l
z l d  depends on both K  and R , and it consists of three terms. The 

first term (( / ) ( / ))K nT R nT  is essentially due to the convergence rate of the variance 

whereas the remaining terms  
22

1
( )l

d

ll
K r  and 2 2

0 0
(( ( ) / ) ( ( ) / ))K K nT R R nT   

corresponds to the convergence rate of the squared bias. As discussed in Lee (2007), the last term 

is new and it does not appear in the standard series estimators for the cross-section case. 

Apparently, it reflects the asymptotic order of squared bias where it corresponds to the 

demeaning component of the within transformation. 
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Theorem 3.2: Let 
0
cov( ( ), )

K K it j it jj
p y e where the 

thk  component 
Kk

  satisfies 

( 1, , )
Kk

k K   for every K . Under Assumptions 1-7, and in addition, 

2

1
0, 0l

d

ll
nTK nT r   as ,n T  jointly, we have 

(i) 1/2 1ˆ( , , , ) ( ) ( ) ( ) (0,1)
K

v y K n T y y T b y N  for 
c

y  and 

(ii) 1/2 1ˆ( , , , ) ( ) ( ) ( ) (0, )
R d

V y K n T z z T b z N I  for 
z

z  

 

where  2 ' 1
.

( , , , ) ( ) ( ) /
K pp q K

v y K n T P y P y nT ,  

2 ' 1 1
.

( , , , ) ( , ) ( , ) /
R qq p qp pp R

V y x z R Q x z Q x z nT   

' 1
.

( ) ( )
K K pp q K
b y P y   

' 1 1
.

( , )
R R qq p qp pp K
b Q x z   

 

The proof of Theorem 3.2 is a straightforward extension of Theorem 3 of Lee (2007) and the key 

steps of the proof are given in Appendix A. As in Lee (2007), Theorem 3.2 implies that the WG 

series estimators are asymptotically biased just as in the case of fixed effects linear dynamic 

panel models when the within transformation of the data is used, see for example Alvarez and 

Arellano (2003). However, since the forms of the biases are known, this suggests the following 

bias corrected estimators for ( )y  and ( )z . 

Let * 1ˆ ˆ ˆ( ) ( ) ( )
K

y y T b y and * 1ˆ ˆ ˆ( ) ( ) ( )
R

z z T b z where ' 1
.

ˆ ˆ ˆ( ) ( ) ,
K K pp q K
b y P y   

' 1 1
.

ˆ ˆ ˆ ˆ ˆ( , ) ,
R R qq p qp pp K
b Q x z 1

1 1 1
ˆ ( ) ( , ) ( )

n J T

K K it j it ji j t
nT w i J P y for some proper 

weighting function ( , ),w i J  and 1 1
.

ˆ ˆ,
qq p pp

 and ˆ
qp

 can be obtained from the estimated 

partitioned matrices of  
'

1 ' ' ' '
1 11 1

ˆ ( ) ( ), ( , ) ( ), ( , )
n T K R K R

it it it it it iti t
nT p y q x z p y q x z . 

Here ˆ
K

 is simply a heteroskedasticity and autocorrelation consistent (HAC) estimator of the 

long-run variance 
K

, and a simple Barlett weighting function ( , ) 1 ( / ( 1))w i J j J  can 

be used. Under the assumption 1-7, it can be shown that the results in Theorem 3.2 remain valid 

when replacing (̂ )y  and (̂ )z  by *̂( )y  and *ˆ ( )z , respectively. 

 

4. Conclusion 

 

This paper considers a within-group type series estimation of a functional-coefficient partially 

linear dynamic panel data model with fixed effects. The convergence rates and asymptotic 

normality of the proposed estimator is developed. It is found that the within-group series 

estimator is asymptotically biased, as in the case of fixed effects linear dynamic panel model 

when the within-group transformation of data is used. A bias corrected type of series estimator is 

proposed. 
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Appendix: Mathematical Proofs 

 

The proofs of Theorem 1 and 2 are similar to that of Lee (2007), therefore we only discuss the 

heuristic ideas of the proofs here. 

 

Proof of Theorem 1: 

( )i  By (5) and (6), we can write 

' 1 '

' 1 '

' 1 ' ' 1 '

' 1 ' ' 1 '

ˆ ˆ( ) ( )

ˆ( ) ( ( ) ( ) )

ˆ ( / ) ( / ) ( / ) ( ( ) / )

ˆ( / ) ( ( ) / ) ( / ) ( ( ) / )

P P P Y Q

P P P P Q e P G Q Q

P P nT Pe nT P P nT P P nT

P P nT P G Q nT P P nT PQ nT

  

Hence, 
2 22 ' 1 ' ' 1 '

2 2
' 1 ' ' 1 '

ˆ1 1 ( / ) ( / ) 1 ( / ) ( ( ) / )

ˆ1 ( / ) ( ( ) / ) 1 ( / ) ( ( ) / )

n n n

n n

P P nT Pe nT P P nT P P nT

P P nT P G Q nT P P nT PQ nT

  

Following the proof of Theorem 3.1 in Lee (2007), it can be shown that the first term and the 

second term respectively, are 
2

' 1 ' 2
0

1 ( / ) ( / ) (( / ) ( ) / )
n p
PP nT Pe nT O K nT K K nT  

and 
2

' 1 ' 2 2 1 2
0

1 ( / ) ( ( ) / ) ( ( ) / )
n p
PP nT P P nT O K K K nT . The convergence 

rate of the third term follows similarly but its convergence rate depends on 
1

d

jj
R r  

because the function G  is approximated by Q , thus 

2 2 1 2' 1 ' 2
01 1

1 ( / ) ( ( ) / ) ( ( ) / )j j
d d

n p j jj j
PP nT P G Q nT O r R r nT . The last term 

looks more complicated because it involves the convergence rate of ˆ( ) . However from (4), 

ˆ( )can be expressed explicitly as a function of ˆ( )  and by substituting this expression 

into the last term and solve for ˆ( ) , it can be shown that  

 
2

' 1 ' 2
0

ˆ1 ( / ) ( ( ) / ) (( / ) ( ( ) / ))
n p
PP nT PQ nT O R nT R R nT . 

Thus, by combining the above results, also by noting that 1 1
n

 almost surely, we have 

2 2 2 2 1 2
0 0

2 1 22 2
0 01 1

22 2 2
0 01

ˆ (( / ) ( ) / ) ( ( ) / )

( ( ) / ) (( / ) ( ( ) / ))

(( / ) ( ) / ) (( / ) ( ) / )

j j

j

p p

d d

p j j pj j

d

p p jj

O K nT K K nT O K K K nT

O r R r nT O R nT R R nT

O K nT K K K nT O R nT r R R nT

Next, by triangle inequality, we have 
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2 ' ' 2

2 ' 2

2 2
0

2 2 2
01

22

1

0

ˆ ˆ[ ( ) ( )] ( ) [ ( ) ( ) ( ( ) ( ))] ( )

ˆ2 2 [ ( ) ( )] ( )

(( / ) ( ) / ) (( / )

( ) / ) ( )

(( / ) ( / )

j

j

L L
u u

L
u

p p

d

jj

d

p jj

E u u dF u E p u p u u dF u

CE E p u u dF u

O K nT K K K nT O R nT

r R R nT O K

O K nT R nT K r

2 2
0

( ) / ( ) / )K K nT R R nT

  

for some positive constant C  and Assumption 5. Thus, we have proved Theorem 1( )i . The 

proof of Theorem 1( )ii  follows the same arguments as above and hence omitted here.      

Proof of Theorem 2: First observe that 

' 1 '

' 1 '

' 1 '

ˆ ˆ1 ( ( ) ( )) 1 ( )

1 {( ) ( )}

1 {( ) ( )}

1 {( ) }

n n

n Q Q

n Q Q

n Q Q

nT u u nTP

nTP PM P PM P

nTP PM P PM G Q

nTP PM P PM e

   (A.1)   

and 

' 1 '

' 1 '

' 1 '

ˆ ˆ1 ( ( ) ( )) 1 ( )

1 {( ) ( )}

1 {( ) ( )}

1 {( ) }

n n

n P P

n P P

n P P

nT z z nTQ

nTQ QM Q QM G Q

nTQ QM Q QM P

nTQ QM Q QM e

   (A.2)    

By Lemma A1.2 of Lee (2007), we have ˆ 0
p

 as ,n T , thus, the first two terms 

in ( .1)A  and ( .2)A can be shown to be asymptotically negligible by Assumption 7. By combining 

the last term in ( .1)A  and ( .2)A along with the result of partitioned regression, yields 

' 1 ' '

1

' 1 ' '

1 {( ) } 0 1 /ˆ
01 {( ) } 1 /

n Q Q n

n P P n

nTP PM P PM e P Pe nT

QnTQ QM Q QM e Qe nT
 

First note that  
1 1ˆ 0

p
 as ,n T and 

it
z  is strictly exogenous for all i  and t . 

Second, following the proof of Theorem 3.2 and Corollary 4.1 of Lee (2007), and the fact that 

1 1
n

 almost surely, the limit distribution of the quantity 

'

'

(1 / ) /

/
K

Pe T nT

Qe nT
 is 

approximately normal with mean zero and variance 2 . Therefore, by using the inverse matrix 

formula of the partitioned matrix, we have 
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1 1 1 1
1 | |

1 1 1 1 1 1
| |

1 1 1 1 1 1
| |

1 1 1
| |

pp pq pp q pp q pq qq

qp qq qq qp pp q qq qq qp pp q pq qq

pp pp pq qq p qp pp pp pq qq p

qq p qp pp qq p

 

 and the desired result is obtained using the above expression.     
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