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Abstract
We assess gains from parallel computation on Backlight supercomputer. The information transfers are expensive.

We find that to make parallel computation efficient, a task per core must be sufficiently large, ranging from few

seconds to one minute depending on the number of cores employed. For small problems, the shared memory

programming (OpenMP) and a hybrid of shared and distributive memory programming (OpenMP&MPI) leads to a

higher efficiency of parallelization than the distributive memory programming (MPI) alone.
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1 Introduction

The speed of processors was steadily growing over the last few decades. However, this
growth has a natural limit (because the speed of electricity along the conducting material
is limited and because a thickness and length of the conducting material is limited).
The recent progress in solving computationally intense problems is related to parallel
computation. A large number of central processing units (CPUs) or graphics processing
units (GPUs) are connected with a network and are coordinated to perform a single job.
Each processor alone does not have much power but taken together, they can form a
supercomputer.
An important role in parallel computation plays communication. A zero core (master)

splits a large problem into many small tasks and assigns the tasks to other cores (workers);
workers complete their tasks and return their results to the master; and the master
aggregates the results and produces the �nal output. In a typical application, the master
and workers exchange information during the process of computation. If the information
exchange is not su¢ciently fast, the gains from parallelization may be low or absent.
Instead of parallel speedup, we may end up with parallel slowdown.
In this paper, we assess the speed of communication on Blacklight supercomputer � a

state-of-art high performance computing machine with 4096 cores. Our numerical exam-
ples are implemented using C programming language and two alternative parallelization
methods: shared memory programming (OpenMP), distributed memory programming
(MPI) and their hybrid (OpenMP&MPI). For high performance computing such as Black-
light, the network is designed and optimized for fast communication between the cores
using a three-dimensional torus topology design. Still, the information exchange between
the cores on Blacklight is far slower than that between the cores on conventional desktops
and laptops.
We assess gains from parallel computation on Backlight supercomputer, and we �nd

that information transfers are expensive. Our experiments show that the problem must
be su¢ciently large to insure gains from parallelization on supercomputers. The optimal
size of the task assigned to each core must be at least few seconds if several cores are used,
and it must be a minute or more if a large number (thousands) of cores are used. We also
�nd that for small problems, OpenMP and OpenMP&MPI lead to a higher e¢ciency of
parallelization than MPI alone.
A key novel feature of our analysis is that it focuses on state-of-art supercomputers.

High performance computing is commonly used in many �elds (physics, biology, engi-
neering, etc.) but applications to economics are scarce. Usefulness of high performance
computing for economic applications was shown in pioneering work of Amman (1986,
1990), Nagurney and Zhang (1998); and also, see Nagurney (1996) for a survey. This
earlier literature focuses on mainframes and is closest to our analysis. More recent lit-
erature on parallel computation rely on desktops and clusters of computers. Doornik
et al. (2006) review many applications of parallel computation in econometrics; Creel
(2005, 2008) and Creel and Go¤e (2008) illustrate the advantages of parallel computa-
tion in the context of several economically relevant examples; Sims et al. (2008) employ
parallel computation in the context of large-scale Markov switching models; Aldrich et
al. (2011), and Morozov and Mathur (2012) apply GPU computation to solve dynamic
economic models; Durham and Geweke (2012) use GPUs to produce sequential poste-
rior simulators for applied Bayesian inference; Cai et al. (2012) apply high throughput
computing (Condor network) to implement value function iteration; Villemot (2012) use



parallel computation in the context of sovereign debt models; and �nally, Valero et al.
(2013) review parallel computing tools available in MATLAB and illustrate their appli-
cation in the context of the Smolyak methods for solving large-scale dynamic economic
models. See also Maliar and Maliar (2014) for a review of economic problems that are
characterized by high computational expense.
The rest of the paper is organized as follows. In Section 2, we describe the parallel

computation paradigm and its applications in economics. In Section 3, we discuss state-
of-art supercomputers and assess their speed in communicating information. Finally, in
Chapter 4, we conclude.

2 Parallel computation

In this section, we describe the advantages and limitations of parallel computation and
show examples of parallelizable problems in economics.

2.1 Why do we need parallel computation?

In the past decades, the speed of computers was steadily growing. Moore (1965) made an
observation that the number of transistors on integrated circuits doubles approximately
every two years, and the speed of processors doubles approximately every 18 months (both
because the number of transistors increases and because transistors become faster). The
Moore law continues to hold meaning that in 10 years, computers will become about 100
times faster.
What shall we do if a 100-times speedup is not su¢cient for our purposes or if a 10-

year horizon is too long for us to wait? There is an alternative source of computational
power that is available at present � parallel computation: we split a large problem into
smaller subproblems, allocate the subproblems among multiples workers (processors),
and solve all the subproblems at once. Serial desktop computers have several central
processing units (CPUs) and may have hundreds of graphics processing units (GPUs),
and a considerable reduction in computational expense may be possible. Supercomputers
have many more cores (hundreds of thousands) and have graphical cards with a huge
number of GPUs. Each processor in a supercomputer is not (far) more powerful than
a processor on our desktop but pooling their e¤orts gives them a high computational
power. Executing 10,000 tasks in parallel can increase the speed of our computation up
to a factor of 10,000. This is what supercomputers are.

2.2 Parallelizable problems in economics

Many applications in economics can bene�t from parallel computation. The easiest case
for parallelization are jobs that are composed of a large number of independent tasks.
This case is known in computer science literature as naturally parallelizable jobs.
One example of naturally parallelizable jobs is stepwise regressions in econometrics.

We run a large number of regressions of a dependent variable on di¤erent combinations
of independent variables to see which combinations produce best results, and we may
run each regression on a separate core. Another example is sensitivity analysis: we
solve an economic model under many di¤erent parameterizations either because we want
to study how the properties of the solution depend on a speci�c parameterization or
because we want to produce multiple data sets for estimating the model�s parameters



(nested �xed point estimations). In this case, we may solve a model for each di¤erent
parameter vector on a separate core. Other examples of naturally parallelizable jobs are
matrix multiplication, exhaustive search over a discrete set of elements, optimization of
a function over a region of state space, etc.
However, most applications in economics cannot be parallelized entirely. A typical ap-

plication will contain some parts that are naturally parallelizable, other parts that cannot
be parallelized and must be executed serially and other parts that can be parallelized but
require information exchange between cores in the process of computation. For example,
in numerical methods for solving economic models, one can parallelize expensive loops
across grid points and/or integration nodes. Since such loops appear inside an iterative
cycle, after each iteration, a master core needs to gather the output produced by all
workers and to combine it in order to produce an input for the next iteration; iterations
continue until convergence is achieved. In this case, the computer code is a sequence of
alternating parallel and serial computations.

2.3 Limitations of parallel computation

Parallel computation is a promising tool for many problems in economics but it is not
automatically useful in every possible context. The limitations of the parallel computation
approach are as follows.
i) Not every problem can be parallelized. For example, suppose we need to produce

time series for an AR(1) process xt+1 = �xt+"t+1, where � 2 (�1; 1) and "t+1 is a random
variable drawn from a given distribution. To produce each subsequent value xt+1 we need
to know the previous value xt and thus, the loop must be executed in a serial manner.
ii) Gains from parallelization are limited by the fraction of code that cannot be par-

allelized (i.e., that needs to be executed serially), which is referred to in the literature as
Amdahl�s (1967) law. Indeed, if 50% of time is spent on running nonparallelizable code,
we can reduce the total running time by a factor of 2 at most, no matter how many cores
we employ.
iii) Di¤erent tasks executed in a parallel manner may di¤er in the amount of time

necessary for their execution. For example, when searching for a maximum of a function
over di¤erent regions of state space, a numerical solver may need considerably more time
for �nding a maximum in some regions than in others. The most expensive region will
determine the speedup and e¢ciency of parallelization since all the workers will have to
wait until the slowest worker catches up with the rest.
iv) The cost of information transfers between multiple cores may be high and may

dramatically reduce the gains from parallelization. Instead of a parallel speedup, we may
have a parallel slowdown.
v) NP-problems are infeasible even with parallel computation: their cost grow ex-

ponentially with dimensionality of the problem but speedups from parallel computation
grow only linearly with the number of CPUs. For example, stepwise regressions are
infeasible in high dimensional models such as one with 1000 regressors.

3 Supercomputers

For desktops, the information exchange between CPUs is very fast. For supercomputers,
the information exchange is far slower and may reduce dramatically gains from paral-
lelization even in applications that are naturally suitable for parallelization. The goal



of this section is therefore to determine how large a task per core should be to obtain
su¢ciently high gains from parallelization on supercomputers. We �rst discuss the ca-
pacities of modern supercomputers, and we then assess the cost of information transfers
on Blacklight supercomputer.

3.1 Type of supercomputers

High computational power becomes increasingly accessible to economic researchers. In
particular, eXtreme Science and Engineering Discovery Environment (XSEDE) portal
�nanced by NSF provides access to supercomputers for US academic/nonpro�t insti-
tutions. Currently, XSEDE is composed of 17 service providers around the world, see
https://portal.xsede.org. Computer time can be also bought in internet at relatively low
prices. For example, Amazon Elastic Compute Cloud provides the possibility to pay for
compute capacity by the hour; see, e.g., http://aws.amazon.com/ec2/#pricing.
Three di¤erent types of supercomputers are distinguished in computer science litera-

ture.

1. High-performance computing (HPC) runs one large application across multiple
cores (either CPUs or GPUs). The user is assigned a �xed number of processors
for a �xed amount of time, and this time is over if not used.

2. High-throughput computing (HTC) runs many small applications at once. The
HTC computation is opportunistic: the user gets a certain number of cores that
nobody uses at that time, and this computer time would be wasted otherwise.1

3. Data intensive computing focuses on input-output operations, where data manipu-
lation dominates computation.

In the paper, we focus on the �rst type of supercomputers�HPC computing. Namely,
we assess the performance of Blacklight, an HPC supercomputer from the XSEDE portal.
Blacklight consists of 256 nodes each of which holds 16 cores, 4096 cores in total. Each
core has a clock rate of 2.27 GHz and 8 Gbytes of memory. The total �oating point
capability of the machine is 37 T�ops, and the total memory capacity of the machine is
32 Tbytes. Blacklight has many software packages installed including C, C++, Fortarn,
R, Python, MATLAB, etc. For a detailed description of Blacklight supercomputer, see
http://www.psc.edu/index.php/computing-resources/blacklight.

3.2 Shared versus distributed memory programming

Using supercomputers requires certain knowledge of the computer architecture and the
operational system (typically, Unix), as well as software that distributes and exchanges
information between di¤erent cores. This is because in addition to our main code, we
must design software that splits a given job into smaller jobs, that exchanges information
between the di¤erent cores in the process of computation and that gathers the information
to produce �nal output.

1Computers in HTC network belong to priority users and are not always free (our own computers
can become a part of HTC network if we give them a permission to use them). HTC software detects
computers that are not currently occupied and assigns tasks to them. An example of HTC network
is Condor, see https://www.xsede.org/purdue-condor ; see Cai et al. (2012) for applications of Condor
software to economics.



An important issue for parallel computation is how to share the memory. Two main
alternatives are shared memory programming and distributed memory programming.

� Shared memory programming. There is a global memory which is accessible by all
processors, although processors may also have their local memory. For example,
OpenMP software splits loops between multiple threads and shares information
through common variables in memory; see http://www.openmp.org.

� Distributed memory programming. Processors possess their own memory and must
send messages to each other in order to retrieve information from memories of
other processors. MPI is a commonly used software for passing messages between
the processors; see http://www.mpi-forum.org.

� Hybrid of shared and distributive memory. OpenMP splits loops between multiple
threads on each blade and MPI is used to distribute computations and communicate
between blades.

The advantage of shared memory is that it is easier to work with and it can be used
to parallelize already existing serial codes. The drawbacks are that the possibilities of
parallelization are limited and that sharing memory between threads can be perilous. The
advantage of distributed memory is that it can work with a very large number of cores and
is ubiquitous but it is also more di¢cult to code. Finally, the e¢ciency of parallelization
can be increases by using the distributed memory programming for a coarse parallelization
and by using the shared memory programming for a �ne parallelization.

3.3 Cost of information transfers on Blacklight supercomputer

To assess the cost of information transfers, we implement a simple numerical example
on Blacklight supercomputer. We speci�cally consider a function with a unique input x,
which is randomly drawn from a uniform distribution [0; 1]

y = sin (3x) + cos (�x) +
x5

5
+
p
x arccos (x) + 8x exp(x): (1)

Our objective is approximate the expectation of y using a conventional Monte Carlo
integration method E (y) � 1

n

P
n

i=1
yi. We study how the computational expense depend

on the size of the problem n. We split the problem across multiple cores so that all cores
performs tasks of the same size. For example, if the number of cores is 16, each core
processes n=16 observations.
Our code is written in C programming language. We implement parallel computation

using both shared memory programming under OpenMP (with multiple threads) and
distributed memory programming under MPI (with point-to-point communication). For
OpenMP, we use "gcc -fopenmp"; and for MPI, we use SGI version "mpicc". In the ex-
periments with OpenMP, we parallelize computation across 16 cores of a single Blacklight
blade. In the experiments with MPI, we used 16 and 128 cores corresponding to 1 and 4
blades, respectively. In the MPI code, each core (process) runs a copy of the executable
(single program, multiple data), takes the portion of the work according to its rank and
works independently of the other cores, except when communicating. Finally, we also im-
plemented a hybrid of MPI and OpenMP on 4 blades (128 cores) where OpenMP is used



to parallelize computations on each blade and MPI is used to distribute computations
between blades.
In Figure 1, we plot the speedup, which is de�ned as de�ned as a ratio

S (N) = � 1=�N , (2)

where � 1 and �N are the times for executing a job on one core and N cores, respectively.

In the experiments using OpenMP, the cost of information transfers is relatively low,
in particular because all 16 cores belong to the same blade. Here, we observe positive
speedups even for problems of very small sizes. In contrast, in the experiments using
MPI, the costs of information transfers dominates gains from parallelization for small
problems, and the serial code on just one core runs faster than the parallelized code. We
have a parallel slowdown instead of a parallel speedup. The intersections of the speedup
curves with a straight line equal to one indicate the points at which the speedup becomes
positive: it ranges from 0.03 seconds for the 16-core case to about 0.9 seconds for the
128-core case, which correspond to the running time per core ranging from 0.003 to 0.007
seconds, respectively. When the problem increases, so do the speedups, approaching the
number of cores used in computation. Finally, we observe that the hybrid OpenMP&MPI
has considerably lower transfer costs and produces speedups for considerably smaller
problems than MPI alone.
In Figure 2, we plot the e¢ciency of parallelization, which is de�ned as

E (N) =
S (N)

N
=

� 1
N�N

. (3)



The e¢ciency shows speedup � 1=�N relative to the number of cores used N .

The tendencies in Figure 2 are parallel to those observed in Figure 1. When the problem
is small, the e¢ciency of parallelization is low, however, when the problem increases, so
does the e¢ciency, approaching one gradually. In the experiments with 16 cores, the
e¢ciency of parallelization using OpenMP is higher than using MPI. Furthermore, our
experiments with MPI show that the e¢ciency of parallelization also depends on the
number of cores used: with 16 cores, the e¢ciency of parallelization of 90% is reached for
20-second problem (2.5 seconds per core), while with 128 cores, a comparable e¢ciency
of parallelization is reached only for 2000-second problem (15.6 seconds per core). Thus,
the cost of information transfers increases with the number of cores used. Our sensitivity
experiments (not reported) had shown that for larger number of cores, the size of the task
per core must be as a minute or even more to achieve high e¢ciency of parallelization
under MPI.

4 Concluding comments

Parallel computing opens a new dimension in numerical analysis in economic. Substantial
gains from parallelization are possible even on desktop computers with few cores. Super-
computers have thousands and thousands of CPUs and GPUs that can be coordinated
for computationally intensive tasks. Also, they have large memories to record the results.
These new possibilities may help to bring economic research to a qualitatively new level
in terms of generality, empirical relevance, and rigor of results.
However, to take advantage of this novel technology, we must formulate problems

and design codes in a manner which is suitable for parallelization. Furthermore, an
important factor to take into account is the cost of information transfers between the
cores. The tasks assigned to each core must be su¢ciently large to have non-trivial gains
from parallelization.
Our numerical assessment shows that the cost of communication is high for super-

computers and may reduce the gains from parallelization dramatically. This is true even
for high performance machines, such as Blacklight, whose network is optimized for a fast
connection between the cores. We �nd that the task assigned to a core must be between



few seconds and one minute depending on the number of cores used. The e¢ciency of
parallelization is higher under OpenMP than under MPI but the possibilities of paral-
lelization are more limited. Of particular interest appear to be hybrid OpenMP&MPI
that uses distributed memory programming for coarse parallelization (across blades) and
that uses shared memory programming for �ne parallelization (across cores within the
blade).
Our numerical �ndings may be useful to researchers who design parallelization codes

for supercomputers. The Monte Carlo analysis is a speci�c example that maybe of limited
interest. However, the Monte Carlo code can be readily replaced in our OpenMP and MPI
codes by any other code the readers maybe interested in (regression, numerical analysis of
equilibrium in some model, etc.). The results of our numerical assessment are suggestive
for other applications as well.
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