
   

 

 

 

Volume 35, Issue 1

 

Expanding the Weighted Updating Model

 

Jesse Aaron Zinn 

College of Business, Clayton State University

Abstract
This work casts light upon a pair of restrictions inherent to the basic weighted updating model, which is a

generalization of Bayesian updating that allows for biased learning. Relaxing the restrictions allows for the study of

individuals who discriminate between observations or who treat information in a dynamically inconsistent manner.

These generalizations augment the set of cognitive biases that can be studied using new versions of the weighted

updating model to include the availability heuristic, order effects, self-attribution bias, and base-rate neglect in light

of irrelevant information.
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1. Introduction

The weighted updating model generalizes Bayesian updating to allow for irrational learning
by exponentially weighting the likelihood function f(ht|θ) and the prior π(θ) as in

π̃(θ|ht) =
f(ht|θ)

βπ(θ)α∫
Θ
f(ht|θ)βπ(θ)α dθ

, (1)

where ht denotes an ordered history of observations (x1, . . . , xt) that are used to infer the
value of the distribution parameter θ ∈ Θ. It is straightforward to see that Bayes’ rule is
the special case of (1) with α = β = 1. Intuitive interpretations of the weights are relatively
straightforward: When β < 1 the history of observations ht is effectively being treated as
less informative than a perfect Bayesian would treat ht (and vice versa). An analogous
interpretation holds for α with respect to prior information.1 For example, conservatism
bias describes beliefs that do not change to high enough degree in light of new evidence.
This bias can be modelled using (1) by α ≥ 1 and β ≤ 1, as long as at least one of the
inequalities is strict.

The purpose of this work is to point out and show how to overcome two restrictions
inherent to the basic weighted updating model expressed in (1). The first restriction is
that the same weight β measures the information content of all of the observed outcomes
x1, . . . , xt. In Section 2, I use the definition of conditional distribution functions to motivate
a version of (1) where each xj has its own weight βj. Modelling beliefs in this way allows
for the study of individuals who discriminate between observations. The second restriction
implicit to the basic weighted updating model (1) is that the weights are fixed over time,
as additional data are observed. In Section 3, I explore the possibility of allowing α and β

to vary over time. Relaxing either of these restrictions expands the set of biases to which
the weighted updating model can be applied, adding at least the availability heuristic, order
effects, self-attribution bias, and base-rate neglect in light of irrelevant information.

This paper builds upon the literature that utilizes the basic weighted updating model in
expression (1). This literature includes Grether (1980) and Grether (1992), both of which
provide empirical evidence for the representativeness heuristic by estimating the weights on
the likelihood function and the prior distribution. Palfrey and Wang (2012) use weighted
updating to model investors who under- or overreact to public information regarding financial
assets in a model with speculative pricing. Benjamin et al. (2013) model “non-belief in the
law of large numbers” (both on its own and in combination with the “law of small numbers”
and base-rate neglect) using the weighted updating model.2

1Zinn (2015) shows that the weights α and β systematically affect the information entropy of the distri-
bution they are weighting, with greater weight yielding less information entropy. This provides a rigorous
foundation for the intuitive interpretations mentioned above.

2Other related work includes Ibrahim and Chen (2000), which introduces power priors, a framework that
allows the statistician to consider data from previous studies by finding a weight in (0, 1) to put on that data
while maintaining a weight of 1 on current data. This can be viewed as a case of weighted updating wherein
the statistician rationally weights different batches of data. Van Benthem et al. (2009) define a “weighted
product updating rule” and show that Bayes’ rule and the Jeffrey updating rule are both special cases.



2. Discrimination Between Data

By the definition of conditional distribution functions, for any t ∈ N and likelihood function
f(ht|θ) the following decomposition holds:

f(ht|θ) = f(xt|ht−1, θ)f(ht−1|θ). (2)

Here it may be useful to note that if the observations are (or at least are assumed to be)
independent then the history ht−1 pre-dating observation xt does not affect its likelihood
function, in which case f(xt|θ) can replace f(xt|ht−1, θ) in expression (2) and throughout the
paper.

Repeated iteration of expression (2) yields

f(ht|θ) =
t∏

j=1

f(xj|hj−1, θ),

which motivates setting up the weighted updating model as3

π̃(θ|ht) ∝ π(θ)α
t∏

j=1

f(xj|hj−1, θ)
βj , (3)

where α remains the weight on the prior distribution and βj is the weight associated with the
jth datum xj, for each j ∈ {1, . . . , t}. Of course, the introductory framework in expression
(1′) is the special case of (3) wherein βj = β for each j ∈ {1, . . . , t}.

In light of the information-theoretic interpretations provided in Zinn (2015), we can
say that if an individual’s beliefs evolve according to the weighted updating model in (3),
then, compared to a perfect Bayesian, the individual is subjectively treating the component
distributions proportional to π(θ)α and f(xj|hj−1, θ)

βj for j = 1, . . . , t each as containing
either more or less information content depending on how the levels of α, β1, . . . , βt com-
pare to unity. As the prior π(θ) summarizes prior information and each likelihood function
f(xj|hj−1, θ) represents the influence of an individual datum xj, the weighted updating model
in expression (3) essentially allows the individual to treat the prior information and each da-
tum xj at their own idiosyncratic levels of information content.

Additional biases that the new version of the weighted updating model expressed in (3)
is capable of modelling include the availability heuristic; order effects, such as primacy and
recency; and self-attribution bias. The remainder of this section discusses how to model
these biases with weighted updating. Table 1 summarizes this discussion.

The availability heuristic generates biases due to certain observations being more avail-
able in memory (Tversky and Kahneman, 1973). This can be modelled using weighted

3Note that the marginal distribution in (the denominator of) expression (1) serves only to normalize the
weighted posterior π̃(θ|ht). Hence, the model can be expressed more simply by

π̃(θ|ht) ∝ f(ht|θ)
βπ(θ)α. (1′)

Expression (3) makes use of this economy of notation.



Table 1: Biases Involving Discrimination between Non-Prior Data

Cognitive Bias Weights

Availability βj high for xj that are more salient

Primacy Effect βj decreasing in j

Recency Effect βj increasing in j

Self-Attribution βj low if xj is undesirable

updating simply by assuming that an economic agent has greater values of βj corresponding
to observations xj that are relatively memorable.

Order effects occur when the relative temporal position of observations seems to affect
beliefs formed from those observations. Experimental subjects typically exhibit either the
primacy effect, where earlier observations are more salient than later observations, or the re-
cency effect, where the opposite occurs (Hogarth and Einhorn, 1992). To model the primacy
effect with the weighted updating model would require that βj decreases as j rises, while
modelling the recency effect involves assuming that βj is increasing in j.

Self-attribution bias occurs when individuals credit their own ability for desirable out-
comes but blame undesirable outcomes on external factors, such as luck.4 This suggests
that agents put greater weights on xj that are desirable and lower weights on xj that are
undesirable.

3. Dynamically Inconsistent Weights

This paper has, up to this point, presented the weighted updating model as one in which the
weights are fixed. This section discusses relaxing this restriction so that weights can change
over time.

To allow the weights to change over time involves allowing them to be functions of time.
These functions can be defined exogenously or endogenously depending on the nature of the
application. Denote them with α(t) and β(t), so that after observing ht the basic weighted
updating model in expression (1′) becomes

π̃(θ|ht) ∝ f(ht|θ)
β(t)π(θ)α(t).

A bias that can be modelled with weights that change over time is base-rate neglect
in light of irrelevant information. As its name suggests, base-rate neglect involves ignoring
prior information, which in its most extreme form can simply be modelled by setting α = 0,
as is mentioned in the appendix of Benjamin et al. (2013). However, subjects who exhibit

4Self-attribution bias seems to depend also on a multitude of factors, including the mood of the individual,
their type of culture, and the social setting, all of which could be taken into account by adjusting the weights
in the weighted updating model. See Shepperd et al. (2008) for a recent survey of this literature.



base-rate neglect in light of irrelevant information typically do not ignore prior information
until after they have observed some non-prior information, suggesting α > 0 before observing
non-prior information. This is illustrated in an experiment on base-rate neglect described
in Kahneman and Tversky (1973). In this experiment, base rates differed between subjects:
One group was told that the descriptions they observed were drawn from a population of
70 lawyers and 30 engineers, while the other group was told that they were drawn from a
population with the frequencies reversed, 30 lawyers and 70 engineers. When experimental
subjects observed a purposefully uninformative description of a man and were asked to guess
whether he is an engineer or a lawyer, the average guess at the probability that the man was
an engineer was approximately 50% in both groups. This base-rate neglect occurred even
though the likelihoods participants gave were consistent with base rates before observing the
irrelevant information, suggesting that participants utilized base rates then ignored them
after observing the uninformative description. Such a phenomenon can be modelled by
defining α(t) such that α(0) > 0 (so that agents utilize prior information) and α(t) = 0 for
t > 0 (so that they ignore the prior information after observing any history ht).

5

Bar-Hillel (1980) finds evidence that individuals who exhibit base-rate neglect do so
because prior information loses salience once there are non-prior observations to consider.
These findings arose from experiments in which subjects made inferences based solely on prior
information several times before observing non-prior information. Bar-Hillel hypothesized
that this made the prior information more salient to participants. Modelling this with base-
rate neglect might involve assuming that α is a function that is decreasing in t (at least from
t = 0 to t = 1), but increasing in the number of times prior information was used before
observations are made (i.e. when t = 0).

4. Concluding Remarks

In this paper I have shown how to relax two implicit restrictions of the basic weighted
updating model. Eliminating these restrictions augments the list of biases that weighted
updating can model. That list now includes the availability heuristic, base-rate neglect, the
law of small numbers, non-belief in the law of large numbers, order effects (e.g. recency and
primacy), the representativeness heuristic, and self-attribution bias. The author does not
expect that this list exhausts the set of biases that can be modelled with weighted updating.
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